IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v220y2018icp351-374.html
   My bibliography  Save this article

Assessment of gasoline direct injector fouling effects on fuel injection, engine performance and emissions

Author

Listed:
  • Badawy, Tawfik
  • Attar, Mohammadreza Anbari
  • Xu, Hongming
  • Ghafourian, Akbar

Abstract

The current optical and thermal experimental tests were mainly focused on obtaining a comprehensive understanding of the effects of gasoline direct injector fouling on mass flow rates, spray characteristics, engine emissions and engine performance. A robust injector fouling cycle was employed to produce coked injectors in a multi-cylinder thermal engine. Deposit build-up in the coked injectors and fouling cycle repeatability was first examined by measurements of fuel flow rate. Macroscopic spray characteristics of the clean and the coked injectors were carried out using high-speed imaging and Planar Laser Induced Fluorescence (PLIF) of sprays foot-print. Fuel droplets size and velocity were characterised with a two-dimensional Phase Doppler Particle Analyser (PDPA). It was observed that the deposit build-up inside injector nozzles and on injector tips reduced the plume cone angle while increased plume penetration length, plume separation angles, mean droplet velocity and size for the coked injector. Impact of injector fouling was further investigated by PLIF measurements of in-cylinder charge inhomogeneity and repeatability in mixture preparation. The coked injectors showed higher degree of inhomogeneity and poorer repeatability in mixture preparation. These were in agreement with combustion analysis results where the coked injectors showed lower load and lower combustion stability compared with the clean injector under same operating conditions. Significantly higher unburned hydrocarbon emissions and particulate number concentration were also observed for the coked injectors. This work was carried out to obtain a broad picture of injector cooking effects in GDI engines.

Suggested Citation

  • Badawy, Tawfik & Attar, Mohammadreza Anbari & Xu, Hongming & Ghafourian, Akbar, 2018. "Assessment of gasoline direct injector fouling effects on fuel injection, engine performance and emissions," Applied Energy, Elsevier, vol. 220(C), pages 351-374.
  • Handle: RePEc:eee:appene:v:220:y:2018:i:c:p:351-374
    DOI: 10.1016/j.apenergy.2018.03.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918303623
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.03.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Bo & Jiang, Yizhou & Hutchins, Peter & Badawy, Tawfik & Xu, Hongming & Zhang, Xinyu & Rack, Alexander & Tafforeau, Paul, 2017. "Numerical analysis of deposit effect on nozzle flow and spray characteristics of GDI injectors," Applied Energy, Elsevier, vol. 204(C), pages 1215-1224.
    2. Jiang, Changzhao & Xu, Hongming & Srivastava, Dhananjay & Ma, Xiao & Dearn, Karl & Cracknell, Roger & Krueger-Venus, Jens, 2017. "Effect of fuel injector deposit on spray characteristics, gaseous emissions and particulate matter in a gasoline direct injection engine," Applied Energy, Elsevier, vol. 203(C), pages 390-402.
    3. Wang, Chongming & Xu, Hongming & Herreros, Jose Martin & Wang, Jianxin & Cracknell, Roger, 2014. "Impact of fuel and injection system on particle emissions from a GDI engine," Applied Energy, Elsevier, vol. 132(C), pages 178-191.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mezhericher, Maksim & Razorenov, Nikolay & Mazor, Gedalya & Ju, Yiguang & Stone, Howard A., 2019. "Submicron aerosols of liquid fuels: Method of production, experimental characterization and a semi-empirical model," Applied Energy, Elsevier, vol. 235(C), pages 1651-1663.
    2. Zbigniew Stępień & Ireneusz Pielecha & Filip Szwajca & Wojciech Cieślik, 2022. "Effects of Ethanol Admixtures with Gasoline on Fuel Atomization Characteristics Using High-Pressure Injectors," Energies, MDPI, vol. 15(8), pages 1-18, April.
    3. Zuo, Qingsong & Xie, Yong & Zhu, Guohui & Wei, Kexiang & Zhang, Bin & Chen, Wei & Tang, Yuanyou & Wang, Zhiqi, 2021. "Investigations on a new C-GPFs with electric heating for enhancing the integrated regeneration performance under critical parameters," Energy, Elsevier, vol. 225(C).
    4. Zhang, Wenbin & Zhang, Zhou & Ma, Xiao & Awad, Omar I. & Li, Yanfei & Shuai, Shijin & Xu, Hongming, 2020. "Impact of injector tip deposits on gasoline direct injection engine combustion, fuel economy and emissions," Applied Energy, Elsevier, vol. 262(C).
    5. Jiang, Changzhao & Parker, Matthew C. & Butcher, Daniel & Spencer, Adrian & Garner, Colin P. & Helie, Jerome, 2019. "Comparison of flash boiling resistance of two injector designs and the consequences on downsized gasoline engine emissions," Applied Energy, Elsevier, vol. 254(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Badawy, Tawfik & Attar, Mohammadreza Anbari & Hutchins, Peter & Xu, Hongming & Krueger Venus, Jens & Cracknell, Roger, 2018. "Investigation of injector coking effects on spray characteristic and engine performance in gasoline direct injection engines," Applied Energy, Elsevier, vol. 220(C), pages 375-394.
    2. Zhang, Wenbin & Zhang, Zhou & Ma, Xiao & Awad, Omar I. & Li, Yanfei & Shuai, Shijin & Xu, Hongming, 2020. "Impact of injector tip deposits on gasoline direct injection engine combustion, fuel economy and emissions," Applied Energy, Elsevier, vol. 262(C).
    3. Slavchov, Radomir I. & Mosbach, Sebastian & Kraft, Markus & Pearson, Richard & Filip, Sorin V., 2018. "An adsorption-precipitation model for the formation of injector external deposits in internal combustion engines," Applied Energy, Elsevier, vol. 228(C), pages 1423-1438.
    4. Liu, Zengbin & Zhen, Xudong & Geng, Jie & Tian, Zhi, 2024. "Effects of injection timing on mixture formation, combustion, and emission characteristics in a n-butanol direct injection spark ignition engine," Energy, Elsevier, vol. 295(C).
    5. Xu, Leilei & Bai, Xue-Song & Jia, Ming & Qian, Yong & Qiao, Xinqi & Lu, Xingcai, 2018. "Experimental and modeling study of liquid fuel injection and combustion in diesel engines with a common rail injection system," Applied Energy, Elsevier, vol. 230(C), pages 287-304.
    6. Jiang, Changzhao & Xu, Hongming & Srivastava, Dhananjay & Ma, Xiao & Dearn, Karl & Cracknell, Roger & Krueger-Venus, Jens, 2017. "Effect of fuel injector deposit on spray characteristics, gaseous emissions and particulate matter in a gasoline direct injection engine," Applied Energy, Elsevier, vol. 203(C), pages 390-402.
    7. Qian, Yong & Li, Zilong & Yu, Liang & Wang, Xiaole & Lu, Xingcai, 2019. "Review of the state-of-the-art of particulate matter emissions from modern gasoline fueled engines," Applied Energy, Elsevier, vol. 238(C), pages 1269-1298.
    8. Jiang, Chenxu & Li, Zilong & Qian, Yong & Wang, Xiaole & Zhang, Yahui & Lu, Xingcai, 2018. "Influences of fuel injection strategies on combustion performance and regular/irregular emissions in a turbocharged gasoline direct injection engine: Commercial gasoline versus multi-components gasoli," Energy, Elsevier, vol. 157(C), pages 173-187.
    9. Gao, Zhiming & Curran, Scott J. & Parks, James E. & Smith, David E. & Wagner, Robert M. & Daw, C. Stuart & Edwards, K. Dean & Thomas, John F., 2015. "Drive cycle simulation of high efficiency combustions on fuel economy and exhaust properties in light-duty vehicles," Applied Energy, Elsevier, vol. 157(C), pages 762-776.
    10. Liu, Zengbin & Zhen, Xudong & Tian, Zhi & Liu, Daming & Wang, Yang, 2024. "Study on the effect of injection strategy on the combustion and emission characteristics of direct injection spark ignition bio-butanol engine," Energy, Elsevier, vol. 289(C).
    11. Yu, Shenghao & Yin, Bifeng & Bi, Qinsheng & Chen, Chen & Jia, Hekun, 2021. "Experimental and numerical investigation on inner flow and spray characteristics of elliptical GDI injectors with large aspect ratio," Energy, Elsevier, vol. 224(C).
    12. Tara Larsson & Senthil Krishnan Mahendar & Anders Christiansen-Erlandsson & Ulf Olofsson, 2021. "The Effect of Pure Oxygenated Biofuels on Efficiency and Emissions in a Gasoline Optimised DISI Engine," Energies, MDPI, vol. 14(13), pages 1-24, June.
    13. Salvo, Orlando de & Vaz de Almeida, Flávio G., 2019. "Influence of technologies on energy efficiency results of official Brazilian tests of vehicle energy consumption," Applied Energy, Elsevier, vol. 241(C), pages 98-112.
    14. Zuo, Qingsong & Xie, Yong & Zhu, Guohui & Wei, Kexiang & Zhang, Bin & Chen, Wei & Tang, Yuanyou & Wang, Zhiqi, 2021. "Investigations on a new C-GPFs with electric heating for enhancing the integrated regeneration performance under critical parameters," Energy, Elsevier, vol. 225(C).
    15. Wang, Chongming & Zeraati-Rezaei, Soheil & Xiang, Liming & Xu, Hongming, 2017. "Ethanol blends in spark ignition engines: RON, octane-added value, cooling effect, compression ratio, and potential engine efficiency gain," Applied Energy, Elsevier, vol. 191(C), pages 603-619.
    16. Zbigniew Stępień & Ireneusz Pielecha & Filip Szwajca & Wojciech Cieślik, 2022. "Effects of Ethanol Admixtures with Gasoline on Fuel Atomization Characteristics Using High-Pressure Injectors," Energies, MDPI, vol. 15(8), pages 1-18, April.
    17. Zheng, Yuanzhou & Shadloo, Mostafa Safdari & Nasiri, Hossein & Maleki, Akbar & Karimipour, Arash & Tlili, Iskander, 2020. "Prediction of viscosity of biodiesel blends using various artificial model and comparison with empirical correlations," Renewable Energy, Elsevier, vol. 153(C), pages 1296-1306.
    18. Krishna, Addepalli S. & Mallikarjuna, J.M. & Kumar, Davinder, 2016. "Effect of engine parameters on in-cylinder flows in a two-stroke gasoline direct injection engine," Applied Energy, Elsevier, vol. 176(C), pages 282-294.
    19. Wang, Xin & Ge, Yunshan & Liu, Linlin & Peng, Zihang & Hao, Lijun & Yin, Hang & Ding, Yan & Wang, Junfang, 2015. "Evaluation on toxic reduction and fuel economy of a gasoline direct injection- (GDI-) powered passenger car fueled with methanol–gasoline blends with various substitution ratios," Applied Energy, Elsevier, vol. 157(C), pages 134-143.
    20. Bermúdez, Vicente & Luján, José Manuel & Climent, Héctor & Campos, Daniel, 2015. "Assessment of pollutants emission and aftertreatment efficiency in a GTDi engine including cooled LP-EGR system under different steady-state operating conditions," Applied Energy, Elsevier, vol. 158(C), pages 459-473.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:220:y:2018:i:c:p:351-374. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.