IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v254y2019ics0306261919312486.html
   My bibliography  Save this article

Lithium-ion battery overcharging thermal characteristics analysis and an impedance-based electro-thermal coupled model simulation

Author

Listed:
  • Li, Junqiu
  • Sun, Danni
  • Jin, Xin
  • Shi, Wentong
  • Sun, Chao

Abstract

Overcharging is one of the main reasons causing lithium-ion battery thermal abuse, probably leading to vehicle accidents. This paper develops an impedance-based method to characterize the battery heat generation during overcharging process. An electro-thermal model is adopted for better computation efficiency. A series of overcharging experiments at 30 ℃ and 60 ℃ are conducted. Interestingly, three stages can be identified from the results, which are the normal heat-accumulating stage, fast heat-accumulating stage and thermal runaway stage, respectively (Stage I, II and III). During Stage I and II, pulse-relaxation and impedance-measurement methods are developed to parameterize the electro-thermal model, under different state of charge, temperature and charging rate conditions. Results of genetic algorithm with Hybrid Pulse Power Characteristic cycling data are used as benchmark. The simulated surface temperature results during overcharging are validated via experiments, which shows that medium frequency impedance method outputs better equivalent resistance and surface temperature estimation accuracy. The proposed model achieves to reduce the temperature estimation root mean squared error to under 0.9 ℃ in all overcharging situations, with greatly reduced computation complexity.

Suggested Citation

  • Li, Junqiu & Sun, Danni & Jin, Xin & Shi, Wentong & Sun, Chao, 2019. "Lithium-ion battery overcharging thermal characteristics analysis and an impedance-based electro-thermal coupled model simulation," Applied Energy, Elsevier, vol. 254(C).
  • Handle: RePEc:eee:appene:v:254:y:2019:i:c:s0306261919312486
    DOI: 10.1016/j.apenergy.2019.113574
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919312486
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.113574?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Angeles Cabañero, Maria & Altmann, Johannes & Gold, Lukas & Boaretto, Nicola & Müller, Jana & Hein, Simon & Zausch, Jochen & Kallo, Josef & Latz, Arnulf, 2019. "Investigation of the temperature dependence of lithium plating onset conditions in commercial Li-ion batteries," Energy, Elsevier, vol. 171(C), pages 1217-1228.
    2. Feng, Xuning & Lu, Languang & Ouyang, Minggao & Li, Jiangqiu & He, Xiangming, 2016. "A 3D thermal runaway propagation model for a large format lithium ion battery module," Energy, Elsevier, vol. 115(P1), pages 194-208.
    3. Feng, Xuning & He, Xiangming & Ouyang, Minggao & Lu, Languang & Wu, Peng & Kulp, Christian & Prasser, Stefan, 2015. "Thermal runaway propagation model for designing a safer battery pack with 25Ah LiNixCoyMnzO2 large format lithium ion battery," Applied Energy, Elsevier, vol. 154(C), pages 74-91.
    4. Waag, Wladislaw & Käbitz, Stefan & Sauer, Dirk Uwe, 2013. "Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application," Applied Energy, Elsevier, vol. 102(C), pages 885-897.
    5. Ren, Dongsheng & Liu, Xiang & Feng, Xuning & Lu, Languang & Ouyang, Minggao & Li, Jianqiu & He, Xiangming, 2018. "Model-based thermal runaway prediction of lithium-ion batteries from kinetics analysis of cell components," Applied Energy, Elsevier, vol. 228(C), pages 633-644.
    6. Zhu, Xiaoqing & Wang, Zhenpo & Wang, Yituo & Wang, Hsin & Wang, Cong & Tong, Lei & Yi, Mi, 2019. "Overcharge investigation of large format lithium-ion pouch cells with Li(Ni0.6Co0.2Mn0.2)O2 cathode for electric vehicles: Thermal runaway features and safety management method," Energy, Elsevier, vol. 169(C), pages 868-880.
    7. Ping, Ping & Wang, Qingsong & Chung, Youngmann & Wen, Jennifer, 2017. "Modelling electro-thermal response of lithium-ion batteries from normal to abuse conditions," Applied Energy, Elsevier, vol. 205(C), pages 1327-1344.
    8. Chu, Zhengyu & Feng, Xuning & Lu, Languang & Li, Jianqiu & Han, Xuebing & Ouyang, Minggao, 2017. "Non-destructive fast charging algorithm of lithium-ion batteries based on the control-oriented electrochemical model," Applied Energy, Elsevier, vol. 204(C), pages 1240-1250.
    9. Ye, Jiana & Chen, Haodong & Wang, Qingsong & Huang, Peifeng & Sun, Jinhua & Lo, Siuming, 2016. "Thermal behavior and failure mechanism of lithium ion cells during overcharge under adiabatic conditions," Applied Energy, Elsevier, vol. 182(C), pages 464-474.
    10. Saw, L.H. & Ye, Y. & Tay, A.A.O., 2014. "Electro-thermal analysis and integration issues of lithium ion battery for electric vehicles," Applied Energy, Elsevier, vol. 131(C), pages 97-107.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Liwen & Zhao, Peng & Xu, Meng & Wang, Xia, 2020. "Computational identification of the safety regime of Li-ion battery thermal runaway," Applied Energy, Elsevier, vol. 261(C).
    2. Wu, Bing & Tang, Yuheng & Yan, Xinping & Guedes Soares, Carlos, 2021. "Bayesian Network modelling for safety management of electric vehicles transported in RoPax ships," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    3. Lingyu Meng & Guofa Wang & Khay Wai See & Yunpeng Wang & Yong Zhang & Caiyun Zang & Rulin Zhou & Bin Xie, 2022. "Large-Scale Li-Ion Battery Research and Application in Mining Industry," Energies, MDPI, vol. 15(11), pages 1-31, May.
    4. Xiong, Ruoyu & Zhang, Tengfang & Huang, Tianlun & Li, Maoyuan & Zhang, Yun & Zhou, Huamin, 2020. "Improvement of electrochemical homogeneity for lithium-ion batteries enabled by a conjoined-electrode structure," Applied Energy, Elsevier, vol. 270(C).
    5. Qin, Yudi & Du, Jiuyu & Lu, Languang & Gao, Ming & Haase, Frank & Li, Jianqiu & Ouyang, Minggao, 2020. "A rapid lithium-ion battery heating method based on bidirectional pulsed current: Heating effect and impact on battery life," Applied Energy, Elsevier, vol. 280(C).
    6. E, Jiaqiang & Xiao, Hanxu & Tian, Sicheng & Huang, Yuxin, 2024. "A comprehensive review on thermal runaway model of a lithium-ion battery: Mechanism, thermal, mechanical, propagation, gas venting and combustion," Renewable Energy, Elsevier, vol. 229(C).
    7. Lin, Xiang-Wei & Li, Yu-Bai & Wu, Wei-Tao & Zhou, Zhi-Fu & Chen, Bin, 2024. "Advances on two-phase heat transfer for lithium-ion battery thermal management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    8. Li, Xiaoyu & Zhang, Zuguang & Wang, Wenhui & Tian, Yong & Li, Dong & Tian, Jindong, 2020. "Multiphysical field measurement and fusion for battery electric-thermal-contour performance analysis," Applied Energy, Elsevier, vol. 262(C).
    9. He, Tengfei & Zhang, Teng & Wang, Zhirong & Cai, Qiong, 2022. "A comprehensive numerical study on electrochemical-thermal models of a cylindrical lithium-ion battery during discharge process," Applied Energy, Elsevier, vol. 313(C).
    10. Charles Mohamed Hamisi & Pius Victor Chombo & Yossapong Laoonual & Somchai Wongwises, 2022. "An Electrothermal Model to Predict Thermal Characteristics of Lithium-Ion Battery under Overcharge Condition," Energies, MDPI, vol. 15(6), pages 1-16, March.
    11. Jiang, Lulu & Deng, Zhongwei & Tang, Xiaolin & Hu, Lin & Lin, Xianke & Hu, Xiaosong, 2021. "Data-driven fault diagnosis and thermal runaway warning for battery packs using real-world vehicle data," Energy, Elsevier, vol. 234(C).
    12. Li, Kangqun & Zhou, Fei & Chen, Xing & Yang, Wen & Shen, Junjie & Song, Zebin, 2023. "State-of-charge estimation combination algorithm for lithium-ion batteries with Frobenius-norm-based QR decomposition modified adaptive cubature Kalman filter and H-infinity filter based on electro-th," Energy, Elsevier, vol. 263(PC).
    13. Wu, Hongfei & Zhang, Xingjuan & Cao, Renfeng & Yang, Chunxin, 2021. "An investigation on electrical and thermal characteristics of cylindrical lithium-ion batteries at low temperatures," Energy, Elsevier, vol. 225(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Jie & Ren, Dongsheng & Hsu, Hungjen & Wang, Li & He, Xiangming & Zhang, Caiping & Feng, Xuning & Ouyang, Minggao, 2021. "Investigating the thermal runaway features of lithium-ion batteries using a thermal resistance network model," Applied Energy, Elsevier, vol. 295(C).
    2. Feng, Xuning & Zheng, Siqi & Ren, Dongsheng & He, Xiangming & Wang, Li & Cui, Hao & Liu, Xiang & Jin, Changyong & Zhang, Fangshu & Xu, Chengshan & Hsu, Hungjen & Gao, Shang & Chen, Tianyu & Li, Yalun , 2019. "Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database," Applied Energy, Elsevier, vol. 246(C), pages 53-64.
    3. Huang, Peifeng & Yao, Caixia & Mao, Binbin & Wang, Qingsong & Sun, Jinhua & Bai, Zhonghao, 2020. "The critical characteristics and transition process of lithium-ion battery thermal runaway," Energy, Elsevier, vol. 213(C).
    4. Ostanek, Jason K. & Li, Weisi & Mukherjee, Partha P. & Crompton, K.R. & Hacker, Christopher, 2020. "Simulating onset and evolution of thermal runaway in Li-ion cells using a coupled thermal and venting model," Applied Energy, Elsevier, vol. 268(C).
    5. Li, Xiaoyu & Zhang, Zuguang & Wang, Wenhui & Tian, Yong & Li, Dong & Tian, Jindong, 2020. "Multiphysical field measurement and fusion for battery electric-thermal-contour performance analysis," Applied Energy, Elsevier, vol. 262(C).
    6. Wang, Gongquan & Kong, Depeng & Ping, Ping & He, Xiaoqin & Lv, Hongpeng & Zhao, Hengle & Hong, Wanru, 2023. "Modeling venting behavior of lithium-ion batteries during thermal runaway propagation by coupling CFD and thermal resistance network," Applied Energy, Elsevier, vol. 334(C).
    7. Huang, Zonghou & Yu, Yin & Duan, Qiangling & Qin, Peng & Sun, Jinhua & Wang, Qingsong, 2022. "Heating position effect on internal thermal runaway propagation in large-format lithium iron phosphate battery," Applied Energy, Elsevier, vol. 325(C).
    8. Ma, Mina & Wang, Yu & Duan, Qiangling & Wu, Tangqin & Sun, Jinhua & Wang, Qingsong, 2018. "Fault detection of the connection of lithium-ion power batteries in series for electric vehicles based on statistical analysis," Energy, Elsevier, vol. 164(C), pages 745-756.
    9. Zhu, Xiaoqing & Wang, Zhenpo & Wang, Yituo & Wang, Hsin & Wang, Cong & Tong, Lei & Yi, Mi, 2019. "Overcharge investigation of large format lithium-ion pouch cells with Li(Ni0.6Co0.2Mn0.2)O2 cathode for electric vehicles: Thermal runaway features and safety management method," Energy, Elsevier, vol. 169(C), pages 868-880.
    10. Zhang, Liwen & Zhao, Peng & Xu, Meng & Wang, Xia, 2020. "Computational identification of the safety regime of Li-ion battery thermal runaway," Applied Energy, Elsevier, vol. 261(C).
    11. Raijmakers, L.H.J. & Danilov, D.L. & Eichel, R.-A. & Notten, P.H.L., 2019. "A review on various temperature-indication methods for Li-ion batteries," Applied Energy, Elsevier, vol. 240(C), pages 918-945.
    12. Ren, Dongsheng & Liu, Xiang & Feng, Xuning & Lu, Languang & Ouyang, Minggao & Li, Jianqiu & He, Xiangming, 2018. "Model-based thermal runaway prediction of lithium-ion batteries from kinetics analysis of cell components," Applied Energy, Elsevier, vol. 228(C), pages 633-644.
    13. Huang, Zonghou & Zhao, Chunpeng & Li, Huang & Peng, Wen & Zhang, Zheng & Wang, Qingsong, 2020. "Experimental study on thermal runaway and its propagation in the large format lithium ion battery module with two electrical connection modes," Energy, Elsevier, vol. 205(C).
    14. Huang, Zonghou & Liu, Jialong & Zhai, Hongju & Wang, Qingsong, 2021. "Experimental investigation on the characteristics of thermal runaway and its propagation of large-format lithium ion batteries under overcharging and overheating conditions," Energy, Elsevier, vol. 233(C).
    15. Wang, Zhi & Wang, Jian, 2020. "Investigation of external heating-induced failure propagation behaviors in large-size cell modules with different phase change materials," Energy, Elsevier, vol. 204(C).
    16. Hong, Jichao & Wang, Zhenpo & Qu, Changhui & Zhou, Yangjie & Shan, Tongxin & Zhang, Jinghan & Hou, Yankai, 2022. "Investigation on overcharge-caused thermal runaway of lithium-ion batteries in real-world electric vehicles," Applied Energy, Elsevier, vol. 321(C).
    17. Farmann, Alexander & Waag, Wladislaw & Sauer, Dirk Uwe, 2016. "Application-specific electrical characterization of high power batteries with lithium titanate anodes for electric vehicles," Energy, Elsevier, vol. 112(C), pages 294-306.
    18. Huang, Zonghou & Shen, Ting & Jin, Kaiqiang & Sun, Jinhua & Wang, Qingsong, 2022. "Heating power effect on the thermal runaway characteristics of large-format lithium ion battery with Li(Ni1/3Co1/3Mn1/3)O2 as cathode," Energy, Elsevier, vol. 239(PA).
    19. Yang, Yang & Yuan, Wei & Zhang, Xiaoqing & Yuan, Yuhang & Wang, Chun & Ye, Yintong & Huang, Yao & Qiu, Zhiqiang & Tang, Yong, 2020. "Overview on the applications of three-dimensional printing for rechargeable lithium-ion batteries," Applied Energy, Elsevier, vol. 257(C).
    20. Zhang, Yue & Song, Laifeng & Tian, Jiamin & Mei, Wenxin & Jiang, Lihua & Sun, Jinhua & Wang, Qingsong, 2024. "Modeling the propagation of internal thermal runaway in lithium-ion battery," Applied Energy, Elsevier, vol. 362(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:254:y:2019:i:c:s0306261919312486. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.