Modelling of thermal runaway propagation in lithium-ion battery pack using reduced-order model
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2023.126646
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Feng, Xuning & Lu, Languang & Ouyang, Minggao & Li, Jiangqiu & He, Xiangming, 2016. "A 3D thermal runaway propagation model for a large format lithium ion battery module," Energy, Elsevier, vol. 115(P1), pages 194-208.
- Wang, Yu & Ren, Dongsheng & Feng, Xuning & Wang, Li & Ouyang, Minggao, 2022. "Thermal runaway modeling of large format high-nickel/silicon-graphite lithium-ion batteries based on reaction sequence and kinetics," Applied Energy, Elsevier, vol. 306(PA).
- Liu, Fen & Wang, Jianfeng & Yang, Na & Wang, Fuqiang & Chen, Yaping & Lu, Dongchen & Liu, Hui & Du, Qian & Ren, Xutong & Shi, Mengyu, 2022. "Experimental study on the alleviation of thermal runaway propagation from an overcharged lithium-ion battery module using different thermal insulation layers," Energy, Elsevier, vol. 257(C).
- Huang, Zonghou & Liu, Jialong & Zhai, Hongju & Wang, Qingsong, 2021. "Experimental investigation on the characteristics of thermal runaway and its propagation of large-format lithium ion batteries under overcharging and overheating conditions," Energy, Elsevier, vol. 233(C).
- Huang, Zonghou & Zhao, Chunpeng & Li, Huang & Peng, Wen & Zhang, Zheng & Wang, Qingsong, 2020. "Experimental study on thermal runaway and its propagation in the large format lithium ion battery module with two electrical connection modes," Energy, Elsevier, vol. 205(C).
- Zhou, Zhizuan & Zhou, Xiaodong & Cao, Bei & Yang, Lizhong & Liew, K.M., 2022. "Investigating the relationship between heating temperature and thermal runaway of prismatic lithium-ion battery with LiFePO4 as cathode," Energy, Elsevier, vol. 256(C).
- He, C.X. & Yue, Q.L. & Chen, Q. & Zhao, T.S., 2022. "Modeling thermal runaway of lithium-ion batteries with a venting process," Applied Energy, Elsevier, vol. 327(C).
- Ren, Dongsheng & Liu, Xiang & Feng, Xuning & Lu, Languang & Ouyang, Minggao & Li, Jianqiu & He, Xiangming, 2018. "Model-based thermal runaway prediction of lithium-ion batteries from kinetics analysis of cell components," Applied Energy, Elsevier, vol. 228(C), pages 633-644.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wang, Gongquan & Ping, Ping & Peng, Rongqi & Lv, Hongpeng & Zhao, Hengle & Gao, Wei & Kong, Depeng, 2023. "A semi reduced-order model for multi-scale simulation of fire propagation of lithium-ion batteries in energy storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
- Li, Kuijie & Gao, Xinlei & Peng, Shijian & Wang, Shengshi & Zhang, Weixin & Liu, Peng & Wu, Weixiong & Wang, Huizhi & Wang, Yu & Feng, Xuning & Cao, Yuan-cheng & Wen, Jinyu & Cheng, Shijie & Ouyang, M, 2024. "A comparative study on multidimensional signal evolution during thermal runaway of lithium-ion batteries with various cathode materials," Energy, Elsevier, vol. 300(C).
- Lu, Xin & Chen, Ning & Li, Hui & Guo, Shiyu & Chen, Zengtao, 2023. "Simulation of the temperature distribution of lithium-ion battery module considering the time-delay effect of the porous electrodes," Energy, Elsevier, vol. 284(C).
- Luo, Pan & Gao, Kai & Hu, Lin & Chen, Bin & Zhang, Yuanjian, 2024. "Adaptive hybrid cooling strategy to mitigate battery thermal runaway considering natural convection in phase change material," Applied Energy, Elsevier, vol. 361(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Huang, Zonghou & Yu, Yin & Duan, Qiangling & Qin, Peng & Sun, Jinhua & Wang, Qingsong, 2022. "Heating position effect on internal thermal runaway propagation in large-format lithium iron phosphate battery," Applied Energy, Elsevier, vol. 325(C).
- E, Jiaqiang & Xiao, Hanxu & Tian, Sicheng & Huang, Yuxin, 2024. "A comprehensive review on thermal runaway model of a lithium-ion battery: Mechanism, thermal, mechanical, propagation, gas venting and combustion," Renewable Energy, Elsevier, vol. 229(C).
- Zhang, Yue & Song, Laifeng & Tian, Jiamin & Mei, Wenxin & Jiang, Lihua & Sun, Jinhua & Wang, Qingsong, 2024. "Modeling the propagation of internal thermal runaway in lithium-ion battery," Applied Energy, Elsevier, vol. 362(C).
- Lin, Shao & Ling, Ziye & Li, Suimin & Cai, Chuyue & Zhang, Zhengguo & Fang, Xiaoming, 2023. "Mitigation of lithium-ion battery thermal runaway and inhibition of thermal runaway propagation using inorganic salt hydrate with integrated latent heat and thermochemical storage," Energy, Elsevier, vol. 266(C).
- Zhou, Zhizuan & Zhou, Xiaodong & Ju, Xiaoyu & Li, Maoyu & Cao, Bei & Yang, Lizhong, 2023. "Experimental study of thermal runaway propagation along horizontal and vertical directions for LiFePO4 electrical energy storage modules," Renewable Energy, Elsevier, vol. 207(C), pages 13-26.
- Ostanek, Jason K. & Li, Weisi & Mukherjee, Partha P. & Crompton, K.R. & Hacker, Christopher, 2020. "Simulating onset and evolution of thermal runaway in Li-ion cells using a coupled thermal and venting model," Applied Energy, Elsevier, vol. 268(C).
- Huang, Zonghou & Shen, Ting & Jin, Kaiqiang & Sun, Jinhua & Wang, Qingsong, 2022. "Heating power effect on the thermal runaway characteristics of large-format lithium ion battery with Li(Ni1/3Co1/3Mn1/3)O2 as cathode," Energy, Elsevier, vol. 239(PA).
- Ouyang, Nan & Zhang, Wencan & Yin, Xiuxing & Li, Xingyao & Xie, Yi & He, Hancheng & Long, Zhuoru, 2023. "A data-driven method for predicting thermal runaway propagation of battery modules considering uncertain conditions," Energy, Elsevier, vol. 273(C).
- Zhu, Xiaoqing & Wang, Zhenpo & Wang, Yituo & Wang, Hsin & Wang, Cong & Tong, Lei & Yi, Mi, 2019. "Overcharge investigation of large format lithium-ion pouch cells with Li(Ni0.6Co0.2Mn0.2)O2 cathode for electric vehicles: Thermal runaway features and safety management method," Energy, Elsevier, vol. 169(C), pages 868-880.
- Zhang, Liwen & Zhao, Peng & Xu, Meng & Wang, Xia, 2020. "Computational identification of the safety regime of Li-ion battery thermal runaway," Applied Energy, Elsevier, vol. 261(C).
- Liu, Yanhui & Zhang, Lei & Ding, Yifei & Huang, Xianjia & Huang, Xinyan, 2024. "Effect of thermal impact on the onset and propagation of thermal runaway over cylindrical Li-ion batteries," Renewable Energy, Elsevier, vol. 222(C).
- Cao, Yanfang & Wang, Kuo & Wang, Zhirong & Wang, Junling & Yang, Yun & Xu, Xiangyu, 2023. "Utilization of liquid nitrogen as efficient inhibitor upon thermal runaway of 18650 lithium ion battery in open space," Renewable Energy, Elsevier, vol. 206(C), pages 1097-1105.
- Li, Kuijie & Gao, Xinlei & Peng, Shijian & Wang, Shengshi & Zhang, Weixin & Liu, Peng & Wu, Weixiong & Wang, Huizhi & Wang, Yu & Feng, Xuning & Cao, Yuan-cheng & Wen, Jinyu & Cheng, Shijie & Ouyang, M, 2024. "A comparative study on multidimensional signal evolution during thermal runaway of lithium-ion batteries with various cathode materials," Energy, Elsevier, vol. 300(C).
- Li, Junqiu & Sun, Danni & Jin, Xin & Shi, Wentong & Sun, Chao, 2019. "Lithium-ion battery overcharging thermal characteristics analysis and an impedance-based electro-thermal coupled model simulation," Applied Energy, Elsevier, vol. 254(C).
- Li, Kuijie & Chen, Long & Gao, Xinlei & Lu, Yao & Wang, Depeng & Zhang, Weixin & Wu, Weixiong & Han, Xuebing & Cao, Yuan-cheng & Wen, Jinyu & Cheng, Shijie & Ouyang, Minggao, 2024. "Implementing expansion force-based early warning in LiFePO4 batteries with various states of charge under thermal abuse scenarios," Applied Energy, Elsevier, vol. 362(C).
- He, C.X. & Yue, Q.L. & Chen, Q. & Zhao, T.S., 2022. "Modeling thermal runaway of lithium-ion batteries with a venting process," Applied Energy, Elsevier, vol. 327(C).
- García, Antonio & Pastor, José V. & Monsalve-Serrano, Javier & Golke, Diego, 2024. "Cell-to-cell dispersion impact on zero-dimensional models for predicting thermal runaway parameters of NCA and NMC811," Applied Energy, Elsevier, vol. 369(C).
- Zhou, Zhizuan & Li, Maoyu & Zhou, Xiaodong & Ju, Xiaoyu & Yang, Lizhong, 2023. "Investigating thermal runaway characteristics and trigger mechanism of the parallel lithium-ion battery," Applied Energy, Elsevier, vol. 349(C).
- Huang, Zonghou & Liu, Jialong & Zhai, Hongju & Wang, Qingsong, 2021. "Experimental investigation on the characteristics of thermal runaway and its propagation of large-format lithium ion batteries under overcharging and overheating conditions," Energy, Elsevier, vol. 233(C).
- Yu, Shuyang & Ma, Ya & Xie, Jingying & Xu, Chao & Lu, Taolin, 2024. "Thermal runaway chain reaction determination and mechanism model establishment of NCA-graphite battery based on the internal temperature," Applied Energy, Elsevier, vol. 353(PB).
More about this item
Keywords
Lithium-ion battery pack; Thermal runaway propagation; Battery safety; Reduced order model;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:268:y:2023:i:c:s0360544223000403. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.