IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v263y2023ipcs0360544222026494.html
   My bibliography  Save this article

State-of-charge estimation combination algorithm for lithium-ion batteries with Frobenius-norm-based QR decomposition modified adaptive cubature Kalman filter and H-infinity filter based on electro-thermal model

Author

Listed:
  • Li, Kangqun
  • Zhou, Fei
  • Chen, Xing
  • Yang, Wen
  • Shen, Junjie
  • Song, Zebin

Abstract

A novel algorithm containing an adaptive cubature Kalman filter (ACKF) modified by Frobenius-norm-based (fro-norm-based) QR decomposition (QR) and H-infinity(H∞) filter based on electro-thermal model is proposed to estimate the state of charge (SOC) of lithium-ion batteries (LIBS). First, an electro-thermal model with a second-order RC equivalent circuit model (ECM) and a lumped thermal model is employed to identify the internal parameters of LIBS at different temperatures. Then, to solve the non-positive definiteness of the error covariance matrix, an adaptive cubature Kalman filter is modified by fro-norm-based QR decomposition (ACKF-QR). Finally, to cope with uncertain noises especially non-Gaussian noises, the H∞ filter is combined with ACKF-QR to estimate the battery SOC (ACKF-QR-H∞). The ACKF-QR-H∞ algorithm is validated under different working conditions at different temperatures with incorrect initial values. The SOC estimation MAXE (Maximum absolute error) of the ACKF-QR-H∞ algorithm is less than 1% and its SOC estimation MAE (Mean absolute error) and RMSE (Root mean square error) are less than 0.32%. As compared with the same algorithm without considering temperature variations, the SOC estimation error of ACKF-QR-H∞ algorithm can almost reduce by half in most cases. When various noises are added manually, the ACKF-QR-H∞ algorithm can remain robust.

Suggested Citation

  • Li, Kangqun & Zhou, Fei & Chen, Xing & Yang, Wen & Shen, Junjie & Song, Zebin, 2023. "State-of-charge estimation combination algorithm for lithium-ion batteries with Frobenius-norm-based QR decomposition modified adaptive cubature Kalman filter and H-infinity filter based on electro-th," Energy, Elsevier, vol. 263(PC).
  • Handle: RePEc:eee:energy:v:263:y:2023:i:pc:s0360544222026494
    DOI: 10.1016/j.energy.2022.125763
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222026494
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125763?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shen, Jiangwei & Ma, Wensai & Xiong, Jian & Shu, Xing & Zhang, Yuanjian & Chen, Zheng & Liu, Yonggang, 2022. "Alternative combined co-estimation of state of charge and capacity for lithium-ion batteries in wide temperature scope," Energy, Elsevier, vol. 244(PB).
    2. Sun, Daoming & Yu, Xiaoli & Wang, Chongming & Zhang, Cheng & Huang, Rui & Zhou, Quan & Amietszajew, Taz & Bhagat, Rohit, 2021. "State of charge estimation for lithium-ion battery based on an Intelligent Adaptive Extended Kalman Filter with improved noise estimator," Energy, Elsevier, vol. 214(C).
    3. Jiandong Duan & Peng Wang & Wentao Ma & Xinyu Qiu & Xuan Tian & Shuai Fang, 2020. "State of Charge Estimation of Lithium Battery Based on Improved Correntropy Extended Kalman Filter," Energies, MDPI, vol. 13(16), pages 1-18, August.
    4. Tian, Yong & Huang, Zhijia & Tian, Jindong & Li, Xiaoyu, 2022. "State of charge estimation of lithium-ion batteries based on cubature Kalman filters with different matrix decomposition strategies," Energy, Elsevier, vol. 238(PC).
    5. Ye, Min & Guo, Hui & Cao, Binggang, 2017. "A model-based adaptive state of charge estimator for a lithium-ion battery using an improved adaptive particle filter," Applied Energy, Elsevier, vol. 190(C), pages 740-748.
    6. Li, Junqiu & Sun, Danni & Jin, Xin & Shi, Wentong & Sun, Chao, 2019. "Lithium-ion battery overcharging thermal characteristics analysis and an impedance-based electro-thermal coupled model simulation," Applied Energy, Elsevier, vol. 254(C).
    7. Tian, Yong & Lai, Rucong & Li, Xiaoyu & Xiang, Lijuan & Tian, Jindong, 2020. "A combined method for state-of-charge estimation for lithium-ion batteries using a long short-term memory network and an adaptive cubature Kalman filter," Applied Energy, Elsevier, vol. 265(C).
    8. Chen, Zheng & Zhao, Hongqian & Shu, Xing & Zhang, Yuanjian & Shen, Jiangwei & Liu, Yonggang, 2021. "Synthetic state of charge estimation for lithium-ion batteries based on long short-term memory network modeling and adaptive H-Infinity filter," Energy, Elsevier, vol. 228(C).
    9. Perez Estevez, Manuel Antonio & Calligaro, Sandro & Bottesi, Omar & Caligiuri, Carlo & Renzi, Massimiliano, 2021. "An electro-thermal model and its electrical parameters estimation procedure in a lithium-ion battery cell," Energy, Elsevier, vol. 234(C).
    10. Wei, Zhongbao & Zhao, Jiyun & Ji, Dongxu & Tseng, King Jet, 2017. "A multi-timescale estimator for battery state of charge and capacity dual estimation based on an online identified model," Applied Energy, Elsevier, vol. 204(C), pages 1264-1274.
    11. Xiangyu Cui & Zhu Jing & Maji Luo & Yazhou Guo & Huimin Qiao, 2018. "A New Method for State of Charge Estimation of Lithium-Ion Batteries Using Square Root Cubature Kalman Filter," Energies, MDPI, vol. 11(1), pages 1-21, January.
    12. Shuaishuai Zhang & Youhong Wan & Jie Ding & Yangyang Da, 2021. "State of Charge (SOC) Estimation Based on Extended Exponential Weighted Moving Average H ∞ Filtering," Energies, MDPI, vol. 14(6), pages 1-15, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Yong & Huang, Zhijia & Tian, Jindong & Li, Xiaoyu, 2022. "State of charge estimation of lithium-ion batteries based on cubature Kalman filters with different matrix decomposition strategies," Energy, Elsevier, vol. 238(PC).
    2. Jiang, Cong & Wang, Shunli & Wu, Bin & Fernandez, Carlos & Xiong, Xin & Coffie-Ken, James, 2021. "A state-of-charge estimation method of the power lithium-ion battery in complex conditions based on adaptive square root extended Kalman filter," Energy, Elsevier, vol. 219(C).
    3. Wei, Zhongbao & Hu, Jian & Li, Yang & He, Hongwen & Li, Weihan & Sauer, Dirk Uwe, 2022. "Hierarchical soft measurement of load current and state of charge for future smart lithium-ion batteries," Applied Energy, Elsevier, vol. 307(C).
    4. Xu, Cheng & Zhang, E & Jiang, Kai & Wang, Kangli, 2022. "Dual fuzzy-based adaptive extended Kalman filter for state of charge estimation of liquid metal battery," Applied Energy, Elsevier, vol. 327(C).
    5. Li, Renzheng & Wang, Hui & Dai, Haifeng & Hong, Jichao & Tong, Guangyao & Chen, Xinbo, 2022. "Accurate state of charge prediction for real-world battery systems using a novel dual-dropout-based neural network," Energy, Elsevier, vol. 250(C).
    6. Wu, Chunling & Hu, Wenbo & Meng, Jinhao & Xu, Xianfeng & Huang, Xinrong & Cai, Lei, 2023. "State-of-charge estimation of lithium-ion batteries based on MCC-AEKF in non-Gaussian noise environment," Energy, Elsevier, vol. 274(C).
    7. Wenxian Duan & Chuanxue Song & Silun Peng & Feng Xiao & Yulong Shao & Shixin Song, 2020. "An Improved Gated Recurrent Unit Network Model for State-of-Charge Estimation of Lithium-Ion Battery," Energies, MDPI, vol. 13(23), pages 1-19, December.
    8. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiaoyong & Fernandez, Carlos, 2022. "An optimized long short-term memory-weighted fading extended Kalman filtering model with wide temperature adaptation for the state of charge estimation of lithium-ion batteries," Applied Energy, Elsevier, vol. 326(C).
    9. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Muhammad Junaid Alvi & Hee-Je Kim, 2019. "Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(3), pages 1-33, January.
    10. Chen, Junxiong & Zhang, Yu & Wu, Ji & Cheng, Weisong & Zhu, Qiao, 2023. "SOC estimation for lithium-ion battery using the LSTM-RNN with extended input and constrained output," Energy, Elsevier, vol. 262(PA).
    11. Zhongbao Wei & Feng Leng & Zhongjie He & Wenyu Zhang & Kaiyuan Li, 2018. "Online State of Charge and State of Health Estimation for a Lithium-Ion Battery Based on a Data–Model Fusion Method," Energies, MDPI, vol. 11(7), pages 1-16, July.
    12. Qian, Cheng & Guan, Hongsheng & Xu, Binghui & Xia, Quan & Sun, Bo & Ren, Yi & Wang, Zili, 2024. "A CNN-SAM-LSTM hybrid neural network for multi-state estimation of lithium-ion batteries under dynamical operating conditions," Energy, Elsevier, vol. 294(C).
    13. Zhu, Yunlong & Dong, Zhe & Cheng, Zhonghua & Huang, Xiaojin & Dong, Yujie & Zhang, Zuoyi, 2023. "Neural network extended state-observer for energy system monitoring," Energy, Elsevier, vol. 263(PA).
    14. Hend M. Fahmy & Rania A. Swief & Hany M. Hasanien & Mohammed Alharbi & José Luis Maldonado & Francisco Jurado, 2023. "Hybrid State of Charge Estimation of Lithium-Ion Battery Using the Coulomb Counting Method and an Adaptive Unscented Kalman Filter," Energies, MDPI, vol. 16(14), pages 1-21, July.
    15. Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    16. Filip Maletić & Mario Hrgetić & Joško Deur, 2020. "Dual Nonlinear Kalman Filter-Based SoC and Remaining Capacity Estimation for an Electric Scooter Li-NMC Battery Pack," Energies, MDPI, vol. 13(3), pages 1-16, January.
    17. Long, Zhenhua & Bai, Mingliang & Ren, Minghao & Liu, Jinfu & Yu, Daren, 2023. "Fault detection and isolation of aeroengine combustion chamber based on unscented Kalman filter method fusing artificial neural network," Energy, Elsevier, vol. 272(C).
    18. Kuang, Pan & Zhou, Fei & Xu, Shuai & Li, Kangqun & Xu, Xiaobin, 2024. "State-of-charge estimation hybrid method for lithium-ion batteries using BiGRU and AM co-modified Seq2Seq network and H-infinity filter," Energy, Elsevier, vol. 300(C).
    19. He, Lin & Wang, Yangyang & Wei, Yujiang & Wang, Mingwei & Hu, Xiaosong & Shi, Qin, 2022. "An adaptive central difference Kalman filter approach for state of charge estimation by fractional order model of lithium-ion battery," Energy, Elsevier, vol. 244(PA).
    20. Dong, Zhe & Liu, Miao & Guo, Zhiwu & Huang, Xiaojin & Zhang, Yajun & Zhang, Zuoyi, 2019. "Adaptive state-observer for monitoring flexible nuclear reactors," Energy, Elsevier, vol. 171(C), pages 893-909.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pc:s0360544222026494. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.