IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v250y2019icp776-785.html
   My bibliography  Save this article

Electromagnetic energy harvester based on a finger trigger rotational gear module and an array of disc Halbach magnets

Author

Listed:
  • Kim, Jae Woo
  • Salauddin, Md
  • Cho, Hyunok
  • Rasel, M. Salauddin
  • Park, Jae Yeong

Abstract

We propose a non-resonant finger-triggered electromagnetic energy harvester (EMEH) using multiple gear modules and an array of disc Halbach magnets, which can generate significant voltage and power under low input-frequency vibrations. The proposed EMEH converts the applied low frequencies into higher frequencies using a multiplying gear module and forwards the linear excitation to a rotational module by gear parts. The multiplying gear module was used for increasing the speed of magnet motion. In the energy generation part, an array of disc Halbach magnets were used for concentrating the magnetic flux toward the coils. The proposed energy harvester generated an open-circuit voltage of 1.39 V at an average power of 7.68 mW, with an optimal load of 36 Ω at an input frequency of 3 Hz. The prototype harvester offers a power density of 0.833 mWcm−3, which is much higher than those of recently reported EMEHs. We demonstrate wearable and portable electronics such as a stopwatch and pedometer-based on finger triggering. This study presents an important step toward low-frequency-vibration-powered devices for portable smart electronic applications and is expected to be widely applicable.

Suggested Citation

  • Kim, Jae Woo & Salauddin, Md & Cho, Hyunok & Rasel, M. Salauddin & Park, Jae Yeong, 2019. "Electromagnetic energy harvester based on a finger trigger rotational gear module and an array of disc Halbach magnets," Applied Energy, Elsevier, vol. 250(C), pages 776-785.
  • Handle: RePEc:eee:appene:v:250:y:2019:i:c:p:776-785
    DOI: 10.1016/j.apenergy.2019.05.059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919309122
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.05.059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Haikun & He, Chaoming & Lv, Siyun & Sun, Haoran, 2018. "A new electromagnetic vibrational energy harvesting device for swaying cables," Applied Energy, Elsevier, vol. 228(C), pages 2448-2461.
    2. Wu, Shuai & Luk, P.C.K. & Li, Chunfang & Zhao, Xiangyu & Jiao, Zongxia & Shang, Yaoxing, 2017. "An electromagnetic wearable 3-DoF resonance human body motion energy harvester using ferrofluid as a lubricant," Applied Energy, Elsevier, vol. 197(C), pages 364-374.
    3. Ju, Suna & Ji, Chang-Hyeon, 2018. "Impact-based piezoelectric vibration energy harvester," Applied Energy, Elsevier, vol. 214(C), pages 139-151.
    4. Khandelwal, Gaurav & Chandrasekhar, Arunkumar & Alluri, Nagamalleswara Rao & Vivekananthan, Venkateswaran & Maria Joseph Raj, Nirmal Prashanth & Kim, Sang-Jae, 2018. "Trash to energy: A facile, robust and cheap approach for mitigating environment pollutant using household triboelectric nanogenerator," Applied Energy, Elsevier, vol. 219(C), pages 338-349.
    5. Trinh, V.L. & Chung, C.K., 2018. "Harvesting mechanical energy, storage, and lighting using a novel PDMS based triboelectric generator with inclined wall arrays and micro-topping structure," Applied Energy, Elsevier, vol. 213(C), pages 353-365.
    6. Halim, M.A. & Rantz, R. & Zhang, Q. & Gu, L. & Yang, K. & Roundy, S., 2018. "An electromagnetic rotational energy harvester using sprung eccentric rotor, driven by pseudo-walking motion," Applied Energy, Elsevier, vol. 217(C), pages 66-74.
    7. Lin, Teng & Pan, Yu & Chen, Shikui & Zuo, Lei, 2018. "Modeling and field testing of an electromagnetic energy harvester for rail tracks with anchorless mounting," Applied Energy, Elsevier, vol. 213(C), pages 219-226.
    8. Rasel, Mohammad Sala Uddin & Park, Jae-Yeong, 2017. "A sandpaper assisted micro-structured polydimethylsiloxane fabrication for human skin based triboelectric energy harvesting application," Applied Energy, Elsevier, vol. 206(C), pages 150-158.
    9. Zhang, Yulong & Wang, Tianyang & Luo, Anxin & Hu, Yushen & Li, Xinxin & Wang, Fei, 2018. "Micro electrostatic energy harvester with both broad bandwidth and high normalized power density," Applied Energy, Elsevier, vol. 212(C), pages 362-371.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Ying & Wang, Wei & Xie, Junxiao & Lei, Yaguo & Cao, Junyi & Xu, Ye & Bader, Sebastian & Bowen, Chris & Oelmann, Bengt, 2022. "Enhanced variable reluctance energy harvesting for self-powered monitoring," Applied Energy, Elsevier, vol. 321(C).
    2. Zhou, Xu & Wang, Kangda & Li, Siyu & Wang, Yadong & Sun, Daoyu & Wang, Longlong & He, Zhizhu & Tang, Wei & Liu, Huicong & Jin, Xiaoping & Li, Zhen, 2024. "An ultra-compact lightweight electromagnetic generator enhanced with Halbach magnet array and printed triphase windings," Applied Energy, Elsevier, vol. 353(PA).
    3. Li, Zhongjie & Jiang, Xiaomeng & Yin, Peilun & Tang, Lihua & Wu, Hao & Peng, Yan & Luo, Jun & Xie, Shaorong & Pu, Huayan & Wang, Daifeng, 2021. "Towards self-powered technique in underwater robots via a high-efficiency electromagnetic transducer with circularly abrupt magnetic flux density change," Applied Energy, Elsevier, vol. 302(C).
    4. Aldawood, Ghufran & Nguyen, Hieu Tri & Bardaweel, Hamzeh, 2019. "High power density spring-assisted nonlinear electromagnetic vibration energy harvester for low base-accelerations," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    5. Luo, Anxin & Zhang, Yulong & Dai, Xiangtian & Wang, Yifan & Xu, Weihan & Lu, Yan & Wang, Min & Fan, Kangqi & Wang, Fei, 2020. "An inertial rotary energy harvester for vibrations at ultra-low frequency with high energy conversion efficiency," Applied Energy, Elsevier, vol. 279(C).
    6. Gu, Yuhan & Liu, Weiqun & Zhao, Caiyou & Wang, Ping, 2020. "A goblet-like non-linear electromagnetic generator for planar multi-directional vibration energy harvesting," Applied Energy, Elsevier, vol. 266(C).
    7. Zhou, Ning & Hou, Zehao & Zhang, Ying & Cao, Junyi & Bowen, Chris R., 2021. "Enhanced swing electromagnetic energy harvesting from human motion," Energy, Elsevier, vol. 228(C).
    8. Toyabur Rahman, M. & Sohel Rana, SM & Salauddin, Md. & Maharjan, Pukar & Bhatta, Trilochan & Kim, Hyunsik & Cho, Hyunok & Park, Jae Yeong, 2020. "A highly miniaturized freestanding kinetic-impact-based non-resonant hybridized electromagnetic-triboelectric nanogenerator for human induced vibrations harvesting," Applied Energy, Elsevier, vol. 279(C).
    9. Tri Nguyen, Hieu & Genov, Dentcho A. & Bardaweel, Hamzeh, 2020. "Vibration energy harvesting using magnetic spring based nonlinear oscillators: Design strategies and insights," Applied Energy, Elsevier, vol. 269(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Zhongjie & Jiang, Xiaomeng & Yin, Peilun & Tang, Lihua & Wu, Hao & Peng, Yan & Luo, Jun & Xie, Shaorong & Pu, Huayan & Wang, Daifeng, 2021. "Towards self-powered technique in underwater robots via a high-efficiency electromagnetic transducer with circularly abrupt magnetic flux density change," Applied Energy, Elsevier, vol. 302(C).
    2. Aldawood, Ghufran & Nguyen, Hieu Tri & Bardaweel, Hamzeh, 2019. "High power density spring-assisted nonlinear electromagnetic vibration energy harvester for low base-accelerations," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    3. Luo, Anxin & Zhang, Yulong & Dai, Xiangtian & Wang, Yifan & Xu, Weihan & Lu, Yan & Wang, Min & Fan, Kangqi & Wang, Fei, 2020. "An inertial rotary energy harvester for vibrations at ultra-low frequency with high energy conversion efficiency," Applied Energy, Elsevier, vol. 279(C).
    4. Toyabur Rahman, M. & Sohel Rana, SM & Salauddin, Md. & Maharjan, Pukar & Bhatta, Trilochan & Kim, Hyunsik & Cho, Hyunok & Park, Jae Yeong, 2020. "A highly miniaturized freestanding kinetic-impact-based non-resonant hybridized electromagnetic-triboelectric nanogenerator for human induced vibrations harvesting," Applied Energy, Elsevier, vol. 279(C).
    5. Li, Zhongjie & Yang, Zhengbao & Naguib, Hani E., 2020. "Introducing revolute joints into piezoelectric energy harvesters," Energy, Elsevier, vol. 192(C).
    6. Maria Joseph Raj, Nirmal Prashanth & Alluri, Nagamalleswara Rao & Vivekananthan, Venkateswaran & Chandrasekhar, Arunkumar & Khandelwal, Gaurav & Kim, Sang-Jae, 2018. "Sustainable yarn type-piezoelectric energy harvester as an eco-friendly, cost-effective battery-free breath sensor," Applied Energy, Elsevier, vol. 228(C), pages 1767-1776.
    7. Han, Jae Yeon & Singh, Huidrom Hemojit & Won, Sukyoung & Kong, Dae Sol & Hu, Ying Chieh & Ko, Young Joon & Lee, Kyu-Tae & Wie, Jeong Jae & Jung, Jong Hoon, 2022. "Highly durable direct-current power generation in polarity-controlled and soft-triggered rotational triboelectric nanogenerator," Applied Energy, Elsevier, vol. 314(C).
    8. Fan, Kangqi & Qu, Hengheng & Wu, Yipeng & Wen, Tao & Wang, Fei, 2020. "Design and development of a rotational energy harvester for ultralow frequency vibrations and irregular human motions," Renewable Energy, Elsevier, vol. 156(C), pages 1028-1039.
    9. Zhou, Xu & Wang, Kangda & Li, Siyu & Wang, Yadong & Sun, Daoyu & Wang, Longlong & He, Zhizhu & Tang, Wei & Liu, Huicong & Jin, Xiaoping & Li, Zhen, 2024. "An ultra-compact lightweight electromagnetic generator enhanced with Halbach magnet array and printed triphase windings," Applied Energy, Elsevier, vol. 353(PA).
    10. Tan, Qinxue & Fan, Kangqi & Tao, Kai & Zhao, Liya & Cai, Meiling, 2020. "A two-degree-of-freedom string-driven rotor for efficient energy harvesting from ultra-low frequency excitations," Energy, Elsevier, vol. 196(C).
    11. Gu, Yuhan & Liu, Weiqun & Zhao, Caiyou & Wang, Ping, 2020. "A goblet-like non-linear electromagnetic generator for planar multi-directional vibration energy harvesting," Applied Energy, Elsevier, vol. 266(C).
    12. Han, Minglei & Yang, Xu & Wang, Dong F. & Jiang, Lei & Song, Wei & Ono, Takahito, 2022. "A mosquito-inspired self-adaptive energy harvester for multi-directional vibrations," Applied Energy, Elsevier, vol. 315(C).
    13. Tri Nguyen, Hieu & Genov, Dentcho A. & Bardaweel, Hamzeh, 2020. "Vibration energy harvesting using magnetic spring based nonlinear oscillators: Design strategies and insights," Applied Energy, Elsevier, vol. 269(C).
    14. Li, Jianwei & Wang, Guotai & Yang, Panpan & Wen, Yongshuang & Zhang, Leian & Song, Rujun & Hou, Chengwei, 2024. "An orientation-adaptive electromagnetic energy harvester scavenging for wind-induced vibration," Energy, Elsevier, vol. 286(C).
    15. Fan, Kangqi & Wang, Chenyu & Zhang, Yan & Guo, Jiyuan & Li, Rongchun & Wang, Fei & Tan, Qinxue, 2023. "Modeling and experimental verification of a pendulum-based low-frequency vibration energy harvester," Renewable Energy, Elsevier, vol. 211(C), pages 100-111.
    16. Helseth, L.E., 2021. "Harvesting energy from light and water droplets by covering photovoltaic cells with transparent polymers," Applied Energy, Elsevier, vol. 300(C).
    17. He, Xianming & Wen, Quan & Lu, Zhuang & Shang, Zhengguo & Wen, Zhiyu, 2018. "A micro-electromechanical systems based vibration energy harvester with aluminum nitride piezoelectric thin film deposited by pulsed direct-current magnetron sputtering," Applied Energy, Elsevier, vol. 228(C), pages 881-890.
    18. Kınas, Zeynep & Karabiber, Abdulkerim & Yar, Adem & Ozen, Abdurrahman & Ozel, Faruk & Ersöz, Mustafa & Okbaz, Abdulkerim, 2022. "High-performance triboelectric nanogenerator based on carbon nanomaterials functionalized polyacrylonitrile nanofibers," Energy, Elsevier, vol. 239(PD).
    19. Sultana, Ayesha & Alam, Md. Mehebub & Middya, Tapas Ranjan & Mandal, Dipankar, 2018. "A pyroelectric generator as a self-powered temperature sensor for sustainable thermal energy harvesting from waste heat and human body heat," Applied Energy, Elsevier, vol. 221(C), pages 299-307.
    20. Azam, Ali & Ahmed, Ammar & Kamran, Muhammad Sajid & Hai, Li & Zhang, Zutao & Ali, Asif, 2021. "Knowledge structuring for enhancing mechanical energy harvesting (MEH): An in-depth review from 2000 to 2020 using CiteSpace," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:250:y:2019:i:c:p:776-785. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.