IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v219y2018icp338-349.html
   My bibliography  Save this article

Trash to energy: A facile, robust and cheap approach for mitigating environment pollutant using household triboelectric nanogenerator

Author

Listed:
  • Khandelwal, Gaurav
  • Chandrasekhar, Arunkumar
  • Alluri, Nagamalleswara Rao
  • Vivekananthan, Venkateswaran
  • Maria Joseph Raj, Nirmal Prashanth
  • Kim, Sang-Jae

Abstract

The plastic pollution often observed on seashores is indicative of a greater problem manifesting in the oceans. However, such pollution mostly emanates from land-based sources. To help mitigate the problem of plastic pollution, we describe herein a waste material-based household triboelectric nanogenerator (H-TENG) that operates in the vertical contact-separation mode. The device takes less than 5 min to fabricate and can be made in-house from recyclable materials without the need for scientific equipment or laboratory expertise. The device was made using randomly selected waste materials. The maximum peak-to-peak voltage generated was 44 V, and the corresponding peak-to-peak short-circuit current (ISC) generated was 289 nA. The H-TENG was systematically studied and showed the capability to exploit biomechanical energy to operate liquid crystal displays (LCDs) and light-emitting diodes (LEDs). Furthermore, we demonstrated how the H-TENG could be used as a dynamic force sensor for small dynamic force detection. Finally, we discuss applications of H-TENGs in an in-house emergency direction system, security system and a magnetically attachable/detachable smart chopping board.

Suggested Citation

  • Khandelwal, Gaurav & Chandrasekhar, Arunkumar & Alluri, Nagamalleswara Rao & Vivekananthan, Venkateswaran & Maria Joseph Raj, Nirmal Prashanth & Kim, Sang-Jae, 2018. "Trash to energy: A facile, robust and cheap approach for mitigating environment pollutant using household triboelectric nanogenerator," Applied Energy, Elsevier, vol. 219(C), pages 338-349.
  • Handle: RePEc:eee:appene:v:219:y:2018:i:c:p:338-349
    DOI: 10.1016/j.apenergy.2018.03.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918303611
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.03.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rasel, Mohammad Sala Uddin & Park, Jae-Yeong, 2017. "A sandpaper assisted micro-structured polydimethylsiloxane fabrication for human skin based triboelectric energy harvesting application," Applied Energy, Elsevier, vol. 206(C), pages 150-158.
    2. Jinsung Chun & Byeong Uk Ye & Jae Won Lee & Dukhyun Choi & Chong-Yun Kang & Sang-Woo Kim & Zhong Lin Wang & Jeong Min Baik, 2016. "Boosted output performance of triboelectric nanogenerator via electric double layer effect," Nature Communications, Nature, vol. 7(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Xiang & Gao, Qi & Cao, Yuying & Yang, Yanfei & Liu, Shiming & Wang, Zhong Lin & Cheng, Tinghai, 2022. "Optimization strategy of wind energy harvesting via triboelectric-electromagnetic flexible cooperation," Applied Energy, Elsevier, vol. 307(C).
    2. Neo, Rong Gen & Khoo, Boo Cheong, 2021. "Towards a larger scale energy harvesting from falling water droplets with an improved electrode configuration," Applied Energy, Elsevier, vol. 285(C).
    3. Li, Zhongjie & Jiang, Xiaomeng & Yin, Peilun & Tang, Lihua & Wu, Hao & Peng, Yan & Luo, Jun & Xie, Shaorong & Pu, Huayan & Wang, Daifeng, 2021. "Towards self-powered technique in underwater robots via a high-efficiency electromagnetic transducer with circularly abrupt magnetic flux density change," Applied Energy, Elsevier, vol. 302(C).
    4. Ye, Xuemin & Hu, Jiami & Zheng, Nan & Li, Chunxi, 2023. "Numerical study on aerodynamic performance and noise of wind turbine airfoils with serrated gurney flap," Energy, Elsevier, vol. 262(PB).
    5. Han, Minglei & Yang, Xu & Wang, Dong F. & Jiang, Lei & Song, Wei & Ono, Takahito, 2022. "A mosquito-inspired self-adaptive energy harvester for multi-directional vibrations," Applied Energy, Elsevier, vol. 315(C).
    6. Wang, Ying & Wu, Yesheng & Liu, Qi & Wang, Xiaodong & Cao, Jie & Cheng, Guanggui & Zhang, Zhongqiang & Ding, Jianning & Li, Kai, 2020. "Origami triboelectric nanogenerator with double-helical structure for environmental energy harvesting," Energy, Elsevier, vol. 212(C).
    7. Kınas, Zeynep & Karabiber, Abdulkerim & Yar, Adem & Ozen, Abdurrahman & Ozel, Faruk & Ersöz, Mustafa & Okbaz, Abdulkerim, 2022. "High-performance triboelectric nanogenerator based on carbon nanomaterials functionalized polyacrylonitrile nanofibers," Energy, Elsevier, vol. 239(PD).
    8. Dudem, Bhaskar & Kim, Dong Hyun & Bharat, L. Krishna & Yu, Jae Su, 2018. "Highly-flexible piezoelectric nanogenerators with silver nanowires and barium titanate embedded composite films for mechanical energy harvesting," Applied Energy, Elsevier, vol. 230(C), pages 865-874.
    9. Hu, Guobiao & Zhao, Chaoyang & Yang, Yaowen & Li, Xin & Liang, Junrui, 2022. "Triboelectric energy harvesting using an origami-inspired structure," Applied Energy, Elsevier, vol. 306(PB).
    10. Han, Jae Yeon & Singh, Huidrom Hemojit & Won, Sukyoung & Kong, Dae Sol & Hu, Ying Chieh & Ko, Young Joon & Lee, Kyu-Tae & Wie, Jeong Jae & Jung, Jong Hoon, 2022. "Highly durable direct-current power generation in polarity-controlled and soft-triggered rotational triboelectric nanogenerator," Applied Energy, Elsevier, vol. 314(C).
    11. Kim, Jae Woo & Salauddin, Md & Cho, Hyunok & Rasel, M. Salauddin & Park, Jae Yeong, 2019. "Electromagnetic energy harvester based on a finger trigger rotational gear module and an array of disc Halbach magnets," Applied Energy, Elsevier, vol. 250(C), pages 776-785.
    12. Hu, Yanqiang & Wang, Xiaoli & Qin, Yechen & Li, Zhihao & Wang, Chenfei & Wu, Heng, 2022. "A robust hybrid generator for harvesting vehicle suspension vibration energy from random road excitation," Applied Energy, Elsevier, vol. 309(C).
    13. Maria Joseph Raj, Nirmal Prashanth & Alluri, Nagamalleswara Rao & Vivekananthan, Venkateswaran & Chandrasekhar, Arunkumar & Khandelwal, Gaurav & Kim, Sang-Jae, 2018. "Sustainable yarn type-piezoelectric energy harvester as an eco-friendly, cost-effective battery-free breath sensor," Applied Energy, Elsevier, vol. 228(C), pages 1767-1776.
    14. Li, Xiang & Cao, Yuying & Yu, Xin & Xu, Yuhong & Yang, Yanfei & Liu, Shiming & Cheng, Tinghai & Wang, Zhong Lin, 2022. "Breeze-driven triboelectric nanogenerator for wind energy harvesting and application in smart agriculture," Applied Energy, Elsevier, vol. 306(PA).
    15. Helseth, L.E., 2021. "Harvesting energy from light and water droplets by covering photovoltaic cells with transparent polymers," Applied Energy, Elsevier, vol. 300(C).
    16. Toyabur Rahman, M. & Sohel Rana, SM & Salauddin, Md. & Maharjan, Pukar & Bhatta, Trilochan & Kim, Hyunsik & Cho, Hyunok & Park, Jae Yeong, 2020. "A highly miniaturized freestanding kinetic-impact-based non-resonant hybridized electromagnetic-triboelectric nanogenerator for human induced vibrations harvesting," Applied Energy, Elsevier, vol. 279(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhai, Cong & Chou, Xiujian & He, Jian & Song, Linlin & Zhang, Zengxing & Wen, Tao & Tian, Zhumei & Chen, Xi & Zhang, Wendong & Niu, Zhichuan & Xue, Chenyang, 2018. "An electrostatic discharge based needle-to-needle booster for dramatic performance enhancement of triboelectric nanogenerators," Applied Energy, Elsevier, vol. 231(C), pages 1346-1353.
    2. Zhang, Yulong & Wang, Tianyang & Luo, Anxin & Hu, Yushen & Li, Xinxin & Wang, Fei, 2018. "Micro electrostatic energy harvester with both broad bandwidth and high normalized power density," Applied Energy, Elsevier, vol. 212(C), pages 362-371.
    3. Li, Zhongjie & Yang, Zhengbao & Naguib, Hani E., 2020. "Introducing revolute joints into piezoelectric energy harvesters," Energy, Elsevier, vol. 192(C).
    4. Byeong-Cheol Kang, & Choi, Hyeong-Jun & Park, Sang-Joon & Ha, Tae-Jun, 2021. "Wearable triboelectric nanogenerators with the reduced loss of triboelectric charges by using a hole transport layer of bar-printed single-wall carbon nanotube random networks," Energy, Elsevier, vol. 233(C).
    5. Sultana, Ayesha & Alam, Md. Mehebub & Middya, Tapas Ranjan & Mandal, Dipankar, 2018. "A pyroelectric generator as a self-powered temperature sensor for sustainable thermal energy harvesting from waste heat and human body heat," Applied Energy, Elsevier, vol. 221(C), pages 299-307.
    6. Li, Zhongjie & Jiang, Xiaomeng & Yin, Peilun & Tang, Lihua & Wu, Hao & Peng, Yan & Luo, Jun & Xie, Shaorong & Pu, Huayan & Wang, Daifeng, 2021. "Towards self-powered technique in underwater robots via a high-efficiency electromagnetic transducer with circularly abrupt magnetic flux density change," Applied Energy, Elsevier, vol. 302(C).
    7. Wang, Ying & Wu, Yesheng & Liu, Qi & Wang, Xiaodong & Cao, Jie & Cheng, Guanggui & Zhang, Zhongqiang & Ding, Jianning & Li, Kai, 2020. "Origami triboelectric nanogenerator with double-helical structure for environmental energy harvesting," Energy, Elsevier, vol. 212(C).
    8. Han, Jae Yeon & Singh, Huidrom Hemojit & Won, Sukyoung & Kong, Dae Sol & Hu, Ying Chieh & Ko, Young Joon & Lee, Kyu-Tae & Wie, Jeong Jae & Jung, Jong Hoon, 2022. "Highly durable direct-current power generation in polarity-controlled and soft-triggered rotational triboelectric nanogenerator," Applied Energy, Elsevier, vol. 314(C).
    9. Yar, Adem & Karabiber, Abdulkerim & Ozen, Abdurrahman & Ozel, Faruk & Coskun, Sahin, 2020. "Flexible nanofiber based triboelectric nanogenerators with high power conversion," Renewable Energy, Elsevier, vol. 162(C), pages 1428-1437.
    10. Dudem, Bhaskar & Kim, Dong Hyun & Bharat, L. Krishna & Yu, Jae Su, 2018. "Highly-flexible piezoelectric nanogenerators with silver nanowires and barium titanate embedded composite films for mechanical energy harvesting," Applied Energy, Elsevier, vol. 230(C), pages 865-874.
    11. Zhao, Chaoyang & Hu, Guobiao & Li, Xin & Liu, Zicheng & Yuan, Weifeng & Yang, Yaowen, 2023. "Wide-bandwidth triboelectric energy harvester combining impact nonlinearity and multi-resonance method," Applied Energy, Elsevier, vol. 348(C).
    12. Hu, Guobiao & Zhao, Chaoyang & Yang, Yaowen & Li, Xin & Liang, Junrui, 2022. "Triboelectric energy harvesting using an origami-inspired structure," Applied Energy, Elsevier, vol. 306(PB).
    13. Di Liu & Linglin Zhou & Shengnan Cui & Yikui Gao & Shaoxin Li & Zhihao Zhao & Zhiying Yi & Haiyang Zou & Youjun Fan & Jie Wang & Zhong Lin Wang, 2022. "Standardized measurement of dielectric materials’ intrinsic triboelectric charge density through the suppression of air breakdown," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    14. Maitra, Anirban & Bera, Ranadip & Halder, Lopamudra & Bera, Aswini & Paria, Sarbaranjan & Karan, Sumanta Kumar & Si, Suman Kumar & De, Anurima & Ojha, Suparna & Khatua, Bhanu Bhusan, 2021. "Photovoltaic and triboelectrification empowered light-weight flexible self-charging asymmetric supercapacitor cell for self-powered multifunctional electronics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    15. Lin Xu & Md Al Mahadi Hasan & Heting Wu & Ya Yang, 2021. "Electromagnetic–Triboelectric Hybridized Nanogenerators," Energies, MDPI, vol. 14(19), pages 1-27, September.
    16. Kim, Jae Woo & Salauddin, Md & Cho, Hyunok & Rasel, M. Salauddin & Park, Jae Yeong, 2019. "Electromagnetic energy harvester based on a finger trigger rotational gear module and an array of disc Halbach magnets," Applied Energy, Elsevier, vol. 250(C), pages 776-785.
    17. Helseth, L.E., 2021. "Harvesting energy from light and water droplets by covering photovoltaic cells with transparent polymers," Applied Energy, Elsevier, vol. 300(C).
    18. Halim, M.A. & Rantz, R. & Zhang, Q. & Gu, L. & Yang, K. & Roundy, S., 2018. "An electromagnetic rotational energy harvester using sprung eccentric rotor, driven by pseudo-walking motion," Applied Energy, Elsevier, vol. 217(C), pages 66-74.
    19. Kim, Jeong Hun & Cho, Jae Yong & Jhun, Jeong Pil & Song, Gyeong Ju & Eom, Jong Hyuk & Jeong, Sinwoo & Hwang, Wonseop & Woo, Min Sik & Sung, Tae Hyun, 2021. "Development of a hybrid type smart pen piezoelectric energy harvester for an IoT platform," Energy, Elsevier, vol. 222(C).
    20. Cai, Mingjing & Wang, Jiahua & Liao, Wei-Hsin, 2020. "Self-powered smart watch and wristband enabled by embedded generator," Applied Energy, Elsevier, vol. 263(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:219:y:2018:i:c:p:338-349. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.