IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v300y2021ics0306261921007959.html
   My bibliography  Save this article

Harvesting energy from light and water droplets by covering photovoltaic cells with transparent polymers

Author

Listed:
  • Helseth, L.E.

Abstract

Energy harvesting of sunlight is often done using photovoltaic cells covered by a protective layer of polymer or glass. Currently, this layer does not have any other function than being transparent and protective, but its functionality could be improved and in fact contribute to electrical energy harvesting from the environment. This work reports new findings on the integration of silicon-based photovoltaic solar with a water droplet energy harvesting device based on contact electrification using readily available materials. The water droplet energy harvesting device utilizes hidden or transparent front electrodes in flat or curved geometries to increase the power output due to water droplets while at the same time minimizing the power loss from the photovoltaic cell. Three different designs are designed and tested, and the advantages and disadvantages are outlined. Particular emphasis is put on investigating the performance of the flat cell design that exhibited the largest electrical power output due to water droplet impact. The electrical energy harvesting efficiency of the commercial photovoltaic cell is about 4.4%, whereas for the water droplet energy harvesting device it is about 0.6%. The relative contributions of the two energy harvesting mechanisms are analyzed, and possible applications outlined.

Suggested Citation

  • Helseth, L.E., 2021. "Harvesting energy from light and water droplets by covering photovoltaic cells with transparent polymers," Applied Energy, Elsevier, vol. 300(C).
  • Handle: RePEc:eee:appene:v:300:y:2021:i:c:s0306261921007959
    DOI: 10.1016/j.apenergy.2021.117394
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921007959
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117394?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Dongyue & Xu, Minyi & Dong, Ming & Guo, Fei & Liu, Xiaohua & Chen, Guijun & Wang, Zhong Lin, 2019. "Water-solid triboelectric nanogenerators: An alternative means for harvesting hydropower," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    2. Helseth, L.E. & Guo, X.D., 2016. "Fluorinated ethylene propylene thin film for water droplet energy harvesting," Renewable Energy, Elsevier, vol. 99(C), pages 845-851.
    3. Ilyas, Mohammad Adnan & Swingler, Jonathan, 2015. "Piezoelectric energy harvesting from raindrop impacts," Energy, Elsevier, vol. 90(P1), pages 796-806.
    4. Khandelwal, Gaurav & Chandrasekhar, Arunkumar & Alluri, Nagamalleswara Rao & Vivekananthan, Venkateswaran & Maria Joseph Raj, Nirmal Prashanth & Kim, Sang-Jae, 2018. "Trash to energy: A facile, robust and cheap approach for mitigating environment pollutant using household triboelectric nanogenerator," Applied Energy, Elsevier, vol. 219(C), pages 338-349.
    5. Helseth, L.E. & Wen, H.Z., 2017. "Evaluation of the energy generation potential of rain cells," Energy, Elsevier, vol. 119(C), pages 472-482.
    6. Neo, Rong Gen & Khoo, Boo Cheong, 2021. "Towards a larger scale energy harvesting from falling water droplets with an improved electrode configuration," Applied Energy, Elsevier, vol. 285(C).
    7. Jong Kyun Moon & Jaeki Jeong & Dongyun Lee & Hyuk Kyu Pak, 2013. "Electrical power generation by mechanically modulating electrical double layers," Nature Communications, Nature, vol. 4(1), pages 1-6, June.
    8. Wijewardhana, K. Rohana & Shen, Tian-Zi & Song, Jang-Kun, 2017. "Energy harvesting using air bubbles on hydrophobic surfaces containing embedded charges," Applied Energy, Elsevier, vol. 206(C), pages 432-438.
    9. Rasel, Mohammad Sala Uddin & Park, Jae-Yeong, 2017. "A sandpaper assisted micro-structured polydimethylsiloxane fabrication for human skin based triboelectric energy harvesting application," Applied Energy, Elsevier, vol. 206(C), pages 150-158.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Binsheng & Chen, Hui & Xia, Baizhan & Yao, Lingyun, 2023. "Acoustic energy harvesting based on topological states of multi-resonant phononic crystals," Applied Energy, Elsevier, vol. 341(C).
    2. Anna Życzyńska & Zbigniew Suchorab & Dariusz Majerek & Violeta Motuzienė, 2022. "Statistical Analysis of the Variability of Energy Efficiency Indicators for a Multi-Family Residential Building," Energies, MDPI, vol. 15(14), pages 1-14, July.
    3. Ischia Kurniawati & Yonmo Sung, 2024. "A Review of Heat Dissipation and Absorption Technologies for Enhancing Performance in Photovoltaic–Thermal Systems," Energies, MDPI, vol. 17(7), pages 1-30, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Zhongjie & Jiang, Xiaomeng & Yin, Peilun & Tang, Lihua & Wu, Hao & Peng, Yan & Luo, Jun & Xie, Shaorong & Pu, Huayan & Wang, Daifeng, 2021. "Towards self-powered technique in underwater robots via a high-efficiency electromagnetic transducer with circularly abrupt magnetic flux density change," Applied Energy, Elsevier, vol. 302(C).
    2. Krzysztof A. Bogdanowicz, 2021. "Bi-Triggering Energy Harvesters: Is It Possible to Generate Energy in a Solar Panel under Any Conditions?," Energies, MDPI, vol. 14(18), pages 1-28, September.
    3. Neo, Rong Gen & Khoo, Boo Cheong, 2021. "Towards a larger scale energy harvesting from falling water droplets with an improved electrode configuration," Applied Energy, Elsevier, vol. 285(C).
    4. Han, Jae Yeon & Singh, Huidrom Hemojit & Won, Sukyoung & Kong, Dae Sol & Hu, Ying Chieh & Ko, Young Joon & Lee, Kyu-Tae & Wie, Jeong Jae & Jung, Jong Hoon, 2022. "Highly durable direct-current power generation in polarity-controlled and soft-triggered rotational triboelectric nanogenerator," Applied Energy, Elsevier, vol. 314(C).
    5. Dudem, Bhaskar & Kim, Dong Hyun & Bharat, L. Krishna & Yu, Jae Su, 2018. "Highly-flexible piezoelectric nanogenerators with silver nanowires and barium titanate embedded composite films for mechanical energy harvesting," Applied Energy, Elsevier, vol. 230(C), pages 865-874.
    6. Hu, Guobiao & Zhao, Chaoyang & Yang, Yaowen & Li, Xin & Liang, Junrui, 2022. "Triboelectric energy harvesting using an origami-inspired structure," Applied Energy, Elsevier, vol. 306(PB).
    7. Wijewardhana, K. Rohana & Ekanayaka, Thilini K. & Jayaweera, E.N. & Shahzad, Amir & Song, Jang-Kun, 2018. "Integration of multiple bubble motion active transducers for improving energy-harvesting efficiency," Energy, Elsevier, vol. 160(C), pages 648-653.
    8. Kim, Jae Woo & Salauddin, Md & Cho, Hyunok & Rasel, M. Salauddin & Park, Jae Yeong, 2019. "Electromagnetic energy harvester based on a finger trigger rotational gear module and an array of disc Halbach magnets," Applied Energy, Elsevier, vol. 250(C), pages 776-785.
    9. Helseth, L.E. & Wen, H.Z., 2017. "Evaluation of the energy generation potential of rain cells," Energy, Elsevier, vol. 119(C), pages 472-482.
    10. Jiaxin Yu & Jun Wang, 2020. "Optimization Design of a Rain-Power Utilization System Based on a Siphon and Its Application in a High-Rise Building," Energies, MDPI, vol. 13(18), pages 1-18, September.
    11. Helseth, L.E. & Guo, X.D., 2016. "Fluorinated ethylene propylene thin film for water droplet energy harvesting," Renewable Energy, Elsevier, vol. 99(C), pages 845-851.
    12. Alluri, Nagamalleswara Rao & Selvarajan, Sophia & Chandrasekhar, Arunkumar & Saravanakumar, Balasubramaniam & Lee, Gae Myoung & Jeong, Ji Hyun & Kim, Sang-Jae, 2017. "Worm structure piezoelectric energy harvester using ionotropic gelation of barium titanate-calcium alginate composite," Energy, Elsevier, vol. 118(C), pages 1146-1155.
    13. Toyabur Rahman, M. & Sohel Rana, SM & Salauddin, Md. & Maharjan, Pukar & Bhatta, Trilochan & Kim, Hyunsik & Cho, Hyunok & Park, Jae Yeong, 2020. "A highly miniaturized freestanding kinetic-impact-based non-resonant hybridized electromagnetic-triboelectric nanogenerator for human induced vibrations harvesting," Applied Energy, Elsevier, vol. 279(C).
    14. Aleksandrova, M.P. & Tsanev, T.D. & Pandiev, I.M. & Dobrikov, G.H., 2020. "Study of piezoelectric behaviour of sputtered KNbO3 nanocoatings for flexible energy harvesting," Energy, Elsevier, vol. 205(C).
    15. Zhang, Yulong & Wang, Tianyang & Luo, Anxin & Hu, Yushen & Li, Xinxin & Wang, Fei, 2018. "Micro electrostatic energy harvester with both broad bandwidth and high normalized power density," Applied Energy, Elsevier, vol. 212(C), pages 362-371.
    16. Kınas, Zeynep & Karabiber, Abdulkerim & Yar, Adem & Ozen, Abdurrahman & Ozel, Faruk & Ersöz, Mustafa & Okbaz, Abdulkerim, 2022. "High-performance triboelectric nanogenerator based on carbon nanomaterials functionalized polyacrylonitrile nanofibers," Energy, Elsevier, vol. 239(PD).
    17. Long, Huahui & Li, Shishi & Jia, Mingsheng & Huang, Dandan & Zhang, Peng & Wang, Xianzhang & Li, Xiaoning & Wu, Jianlong & Hou, Dongdong & Zhang, Qianxi, 2024. "A tubular liquid-solid triboelectric-electromagnetic hybrid nanogenerator for enhancing wave energy harvesting," Energy, Elsevier, vol. 304(C).
    18. Li, Zhongjie & Yang, Zhengbao & Naguib, Hani E., 2020. "Introducing revolute joints into piezoelectric energy harvesters," Energy, Elsevier, vol. 192(C).
    19. Bao, Bin & Chen, Wen & Wang, Quan, 2019. "A piezoelectric hydro-energy harvester featuring a special container structure," Energy, Elsevier, vol. 189(C).
    20. Zou, Donglin & Liu, Gaoyu & Rao, Zhushi & Tan, Ting & Zhang, Wenming & Liao, Wei-Hsin, 2021. "Design of a multi-stable piezoelectric energy harvester with programmable equilibrium point configurations," Applied Energy, Elsevier, vol. 302(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:300:y:2021:i:c:s0306261921007959. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.