Enhanced variable reluctance energy harvesting for self-powered monitoring
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2022.119402
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Nozariasbmarz, Amin & Collins, Henry & Dsouza, Kelvin & Polash, Mobarak Hossain & Hosseini, Mahshid & Hyland, Melissa & Liu, Jie & Malhotra, Abhishek & Ortiz, Francisco Matos & Mohaddes, Farzad & Rame, 2020. "Review of wearable thermoelectric energy harvesting: From body temperature to electronic systems," Applied Energy, Elsevier, vol. 258(C).
- Fu, Hailing & Yeatman, Eric M., 2017. "A methodology for low-speed broadband rotational energy harvesting using piezoelectric transduction and frequency up-conversion," Energy, Elsevier, vol. 125(C), pages 152-161.
- Gholikhani, Mohammadreza & Roshani, Hossein & Dessouky, Samer & Papagiannakis, A.T., 2020. "A critical review of roadway energy harvesting technologies," Applied Energy, Elsevier, vol. 261(C).
- Deng, Licheng & Jiang, Jian & Zhang, Dingli & Zhou, Lin & Fang, Yuming, 2021. "Design and modeling a frequency self-tuning vibration energy harvester for rotational applications," Energy, Elsevier, vol. 235(C).
- Miao, Gang & Fang, Shitong & Wang, Suo & Zhou, Shengxi, 2022. "A low-frequency rotational electromagnetic energy harvester using a magnetic plucking mechanism," Applied Energy, Elsevier, vol. 305(C).
- Zou, Hong-Xiang & Zhao, Lin-Chuan & Gao, Qiu-Hua & Zuo, Lei & Liu, Feng-Rui & Tan, Ting & Wei, Ke-Xiang & Zhang, Wen-Ming, 2019. "Mechanical modulations for enhancing energy harvesting: Principles, methods and applications," Applied Energy, Elsevier, vol. 255(C).
- Kim, Jae Woo & Salauddin, Md & Cho, Hyunok & Rasel, M. Salauddin & Park, Jae Yeong, 2019. "Electromagnetic energy harvester based on a finger trigger rotational gear module and an array of disc Halbach magnets," Applied Energy, Elsevier, vol. 250(C), pages 776-785.
- Zhang, Liufeng & Zhang, Feibin & Qin, Zhaoye & Han, Qinkai & Wang, Tianyang & Chu, Fulei, 2022. "Piezoelectric energy harvester for rolling bearings with capability of self-powered condition monitoring," Energy, Elsevier, vol. 238(PB).
- Zhao, Lin-Chuan & Zou, Hong-Xiang & Yan, Ge & Liu, Feng-Rui & Tan, Ting & Zhang, Wen-Ming & Peng, Zhi-Ke & Meng, Guang, 2019. "A water-proof magnetically coupled piezoelectric-electromagnetic hybrid wind energy harvester," Applied Energy, Elsevier, vol. 239(C), pages 735-746.
- Wang, Hao & Jasim, Abbas & Chen, Xiaodan, 2018. "Energy harvesting technologies in roadway and bridge for different applications – A comprehensive review," Applied Energy, Elsevier, vol. 212(C), pages 1083-1094.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wang, Zhixia & Du, Hongzhi & Wang, Wei & Zhang, Qichang & Gu, Fengshou & Ball, Andrew D. & Liu, Cheng & Jiao, Xuanbo & Qiu, Hongyun & Shi, Dawei, 2024. "A high performance contra-rotating energy harvester and its wireless sensing application toward green and maintain free vehicle monitoring," Applied Energy, Elsevier, vol. 356(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zou, Hong-Xiang & Zhu, Quan-Wei & He, Jia-Yi & Zhao, Lin-Chuan & Wei, Ke-Xiang & Zhang, Wen-Ming & Du, Rong-Hua & Liu, Sheng, 2024. "Energy harvesting floor using sustained-release regulation mechanism for self-powered traffic management," Applied Energy, Elsevier, vol. 353(PA).
- Masabi, Sayed Nahiyan & Fu, Hailing & Flint, James A. & Theodossiades, Stephanos, 2024. "A pendulum-based rotational energy harvester for self-powered monitoring of rotating systems in the era of industrial digitization," Applied Energy, Elsevier, vol. 365(C).
- Liu, Huicong & Fu, Hailing & Sun, Lining & Lee, Chengkuo & Yeatman, Eric M., 2021. "Hybrid energy harvesting technology: From materials, structural design, system integration to applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
- Zhao, Lin-Chuan & Zou, Hong-Xiang & Zhao, Ying-Jie & Wu, Zhi-Yuan & Liu, Feng-Rui & Wei, Ke-Xiang & Zhang, Wen-Ming, 2022. "Hybrid energy harvesting for self-powered rotor condition monitoring using maximal utilization strategy in structural space and operation process," Applied Energy, Elsevier, vol. 314(C).
- Miao, Gang & Fang, Shitong & Wang, Suo & Zhou, Shengxi, 2022. "A low-frequency rotational electromagnetic energy harvester using a magnetic plucking mechanism," Applied Energy, Elsevier, vol. 305(C).
- Fang, Shitong & Miao, Gang & Chen, Keyu & Xing, Juntong & Zhou, Shengxi & Yang, Zhichun & Liao, Wei-Hsin, 2022. "Broadband energy harvester for low-frequency rotations utilizing centrifugal softening piezoelectric beam array," Energy, Elsevier, vol. 241(C).
- Beladipour, M. & Soleymani, M. & Abolmasoumi, Amir H. & Ebadi, M., 2022. "Energy regeneration of active pendulum system in tall buildings subjected to wind and seismic loads," Applied Energy, Elsevier, vol. 328(C).
- Chen, Cheng & Sharafi, Amir & Sun, Jian-Qiao, 2020. "A high density piezoelectric energy harvesting device from highway traffic – Design analysis and laboratory validation," Applied Energy, Elsevier, vol. 269(C).
- Zhou, Xu & Wang, Kangda & Li, Siyu & Wang, Yadong & Sun, Daoyu & Wang, Longlong & He, Zhizhu & Tang, Wei & Liu, Huicong & Jin, Xiaoping & Li, Zhen, 2024. "An ultra-compact lightweight electromagnetic generator enhanced with Halbach magnet array and printed triphase windings," Applied Energy, Elsevier, vol. 353(PA).
- Yuan, Huazhi & Wang, Shuai & Wang, Chaohui & Song, Zhi & Li, Yanwei, 2022. "Design of piezoelectric device compatible with pavement considering traffic: Simulation, laboratory and on-site," Applied Energy, Elsevier, vol. 306(PB).
- Said Bentouba & Nadjet Zioui & Peter Breuhaus & Mahmoud Bourouis, 2023. "Overview of the Potential of Energy Harvesting Sources in Electric Vehicles," Energies, MDPI, vol. 16(13), pages 1-22, July.
- Zhang, Tingsheng & Wu, Xiaoping & Pan, Yajia & Luo, Dabing & Xu, Yongsheng & Zhang, Zutao & Yuan, Yanping & Yan, Jinyue, 2022. "Vibration energy harvesting system based on track energy-recycling technology for heavy-duty freight railroads," Applied Energy, Elsevier, vol. 323(C).
- Sajib Roy & Md Humayun Kabir & Md Salauddin & Miah A. Halim, 2022. "An Electromagnetic Wind Energy Harvester Based on Rotational Magnet Pole-Pairs for Autonomous IoT Applications," Energies, MDPI, vol. 15(15), pages 1-14, August.
- Li, Zhongjie & Jiang, Xiaomeng & Yin, Peilun & Tang, Lihua & Wu, Hao & Peng, Yan & Luo, Jun & Xie, Shaorong & Pu, Huayan & Wang, Daifeng, 2021. "Towards self-powered technique in underwater robots via a high-efficiency electromagnetic transducer with circularly abrupt magnetic flux density change," Applied Energy, Elsevier, vol. 302(C).
- Mingxuan Mao & Xiaoyu Ni, 2024. "A Comprehensive Review of Physical Models and Performance Evaluations for Pavement Photovoltaic Modules," Energies, MDPI, vol. 17(11), pages 1-17, May.
- Kwak, Wonil & Lee, Yongbok, 2021. "Optimal design and experimental verification of piezoelectric energy harvester with fractal structure," Applied Energy, Elsevier, vol. 282(PA).
- Nithesh Naik & P. Suresh & Sanjay Yadav & M. P. Nisha & José Luis Arias-Gonzáles & Juan Carlos Cotrina-Aliaga & Ritesh Bhat & Manohara D. Jalageri & Yashaarth Kaushik & Aakif Budnar Kunjibettu, 2023. "A Review on Composite Materials for Energy Harvesting in Electric Vehicles," Energies, MDPI, vol. 16(8), pages 1-19, April.
- Kan, Junwu & Zhang, Li & Wang, Shuyun & Lin, Shijie & Yang, Zemeng & Meng, Fanxu & Zhang, Zhonghua, 2023. "Design and characterization of a self-excited unibody piezoelectric energy harvester by utilizing rotationally induced pendulation of along-groove iron balls," Energy, Elsevier, vol. 285(C).
- Hu, Hengwu & Zha, Xudong & Niu, Chao & Wang, Ziwei & Lv, Ruidong, 2024. "Structural optimization and performance testing of concentrated photovoltaic panels for pavement," Applied Energy, Elsevier, vol. 356(C).
- Diogo Correia & Adelino Ferreira, 2021. "Energy Harvesting on Airport Pavements: State-of-the-Art," Sustainability, MDPI, vol. 13(11), pages 1-20, May.
More about this item
Keywords
Energy harvesting; Variable reluctance; Low-frequency rotation; Condition monitoring;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:321:y:2022:i:c:s0306261922007395. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.