IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v213y2018icp353-365.html
   My bibliography  Save this article

Harvesting mechanical energy, storage, and lighting using a novel PDMS based triboelectric generator with inclined wall arrays and micro-topping structure

Author

Listed:
  • Trinh, V.L.
  • Chung, C.K.

Abstract

The triboelectric generators (TEG) or triboelectric nanogenerators (TENG) are effective devices converting the wasted mechanical energy into electrical one that can be used powerfully in light emission and energy storage for various low-power electronic applications. The TEG/TENG’s output performance strongly depends on the surface morphology of the contact tribo-materials. Here, we investigate the morphology effect on the output performance ofa novel polydimethylsiloxane (PDMS) based TEG with Inclined Wall Arrays and Micro-Topping (IWA-MT) structure concerning mechanical–electrical energy converted electricity, storage, and lighting. The special novel shape of the IWA-MT-PDMS in the contact-separating mode with aluminum (Al) caused the increased contact area and friction of the two tribo-surfaces for enhancing the power and performance of TEG device. The sustainable IWA-MT TEG was fabricated using a green, low-cost, flexible CO2 laser-ablation on the polymethyl methacrylate mold and a polymer casting process. Two IWA-MT types were designed to study the power enhancement and mechanical–electrical energy conversion of TEG including an Inclined Wall Arrays with Micro-Particle topping (IWA-MP) and with Splayed Micro-Dome topping (IWA-SMD). In comparison, the IWA-MP-PDMS-TEG significantly exceeds the IWA-SMD-PDMS-TEG with a maximum open-circuit voltage of 135.8 V, a short-circuit current of 109.5 μA, a current density of 3.5 μA cm−2, a maximum power of 29.7 mW corresponding to a power density of 9.6 W m−2. The energy storage ability of IWA-MP-PDMS-TEG is characterized by a charged voltage of 1.74 V at 0.76 s into a 0.22 μF capacitorand, and stable charging with thousands of times into a 0.1 µF capacitor. The IWA-MP-PDMS-TEG can directly light on 83 colored LEDs wired in series, and power to the advertising boards.

Suggested Citation

  • Trinh, V.L. & Chung, C.K., 2018. "Harvesting mechanical energy, storage, and lighting using a novel PDMS based triboelectric generator with inclined wall arrays and micro-topping structure," Applied Energy, Elsevier, vol. 213(C), pages 353-365.
  • Handle: RePEc:eee:appene:v:213:y:2018:i:c:p:353-365
    DOI: 10.1016/j.apenergy.2018.01.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918300400
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.01.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Xingtian & Pan, Hongye & Qi, Lingfei & Zhang, Zutao & Yuan, Yanping & Liu, Yujie, 2017. "A renewable energy harvesting system using a mechanical vibration rectifier (MVR) for railroads," Applied Energy, Elsevier, vol. 204(C), pages 1535-1543.
    2. Han, Nuomin & Zhao, Dan & Schluter, Jorg U. & Goh, Ernest Seach & Zhao, He & Jin, Xiao, 2016. "Performance evaluation of 3D printed miniature electromagnetic energy harvesters driven by air flow," Applied Energy, Elsevier, vol. 178(C), pages 672-680.
    3. Jun-Ho Yang & Young-Keun Kim & Jae Young Lee, 2015. "Simplified Process for Manufacturing Macroscale Patterns to Enhance Voltage Generation by a Triboelectric Generator," Energies, MDPI, vol. 8(11), pages 1-12, November.
    4. Zhao, Dan & Ji, Chenzhen & Teo, C. & Li, Shihuai, 2014. "Performance of small-scale bladeless electromagnetic energy harvesters driven by water or air," Energy, Elsevier, vol. 74(C), pages 99-108.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Jae Woo & Salauddin, Md & Cho, Hyunok & Rasel, M. Salauddin & Park, Jae Yeong, 2019. "Electromagnetic energy harvester based on a finger trigger rotational gear module and an array of disc Halbach magnets," Applied Energy, Elsevier, vol. 250(C), pages 776-785.
    2. Li, Zhongjie & Jiang, Xiaomeng & Yin, Peilun & Tang, Lihua & Wu, Hao & Peng, Yan & Luo, Jun & Xie, Shaorong & Pu, Huayan & Wang, Daifeng, 2021. "Towards self-powered technique in underwater robots via a high-efficiency electromagnetic transducer with circularly abrupt magnetic flux density change," Applied Energy, Elsevier, vol. 302(C).
    3. Sultana, Ayesha & Alam, Md. Mehebub & Middya, Tapas Ranjan & Mandal, Dipankar, 2018. "A pyroelectric generator as a self-powered temperature sensor for sustainable thermal energy harvesting from waste heat and human body heat," Applied Energy, Elsevier, vol. 221(C), pages 299-307.
    4. Wang, Ying & Wu, Yesheng & Liu, Qi & Wang, Xiaodong & Cao, Jie & Cheng, Guanggui & Zhang, Zhongqiang & Ding, Jianning & Li, Kai, 2020. "Origami triboelectric nanogenerator with double-helical structure for environmental energy harvesting," Energy, Elsevier, vol. 212(C).
    5. Kınas, Zeynep & Karabiber, Abdulkerim & Yar, Adem & Ozen, Abdurrahman & Ozel, Faruk & Ersöz, Mustafa & Okbaz, Abdulkerim, 2022. "High-performance triboelectric nanogenerator based on carbon nanomaterials functionalized polyacrylonitrile nanofibers," Energy, Elsevier, vol. 239(PD).
    6. Yar, Adem, 2021. "High performance of multi-layered triboelectric nanogenerators for mechanical energy harvesting," Energy, Elsevier, vol. 222(C).
    7. Maria Joseph Raj, Nirmal Prashanth & Alluri, Nagamalleswara Rao & Vivekananthan, Venkateswaran & Chandrasekhar, Arunkumar & Khandelwal, Gaurav & Kim, Sang-Jae, 2018. "Sustainable yarn type-piezoelectric energy harvester as an eco-friendly, cost-effective battery-free breath sensor," Applied Energy, Elsevier, vol. 228(C), pages 1767-1776.
    8. Li, Zhongjie & Yang, Zhengbao & Naguib, Hani E., 2020. "Introducing revolute joints into piezoelectric energy harvesters," Energy, Elsevier, vol. 192(C).
    9. Xue, Weijiang & Chen, Tianwu & Ren, Zhichu & Kim, So Yeon & Chen, Yuming & Zhang, Pengcheng & Zhang, Sulin & Li, Ju, 2020. "Molar-volume asymmetry enabled low-frequency mechanical energy harvesting in electrochemical cells," Applied Energy, Elsevier, vol. 273(C).
    10. Han, Jae Yeon & Singh, Huidrom Hemojit & Won, Sukyoung & Kong, Dae Sol & Hu, Ying Chieh & Ko, Young Joon & Lee, Kyu-Tae & Wie, Jeong Jae & Jung, Jong Hoon, 2022. "Highly durable direct-current power generation in polarity-controlled and soft-triggered rotational triboelectric nanogenerator," Applied Energy, Elsevier, vol. 314(C).
    11. Zhai, Cong & Chou, Xiujian & He, Jian & Song, Linlin & Zhang, Zengxing & Wen, Tao & Tian, Zhumei & Chen, Xi & Zhang, Wendong & Niu, Zhichuan & Xue, Chenyang, 2018. "An electrostatic discharge based needle-to-needle booster for dramatic performance enhancement of triboelectric nanogenerators," Applied Energy, Elsevier, vol. 231(C), pages 1346-1353.
    12. Mule, Anki Reddy & Dudem, Bhaskar & Yu, Jae Su, 2018. "High-performance and cost-effective triboelectric nanogenerators by sandpaper-assisted micropatterned polytetrafluoroethylene," Energy, Elsevier, vol. 165(PA), pages 677-684.
    13. Song, Gyeong Ju & Cho, Jae Yong & Kim, Kyung-Bum & Ahn, Jung Hwan & Song, Yewon & Hwang, Wonseop & Hong, Seong Do & Sung, Tae Hyun, 2019. "Development of a pavement block piezoelectric energy harvester for self-powered walkway applications," Applied Energy, Elsevier, vol. 256(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Xu & Wang, Kangda & Li, Siyu & Wang, Yadong & Sun, Daoyu & Wang, Longlong & He, Zhizhu & Tang, Wei & Liu, Huicong & Jin, Xiaoping & Li, Zhen, 2024. "An ultra-compact lightweight electromagnetic generator enhanced with Halbach magnet array and printed triphase windings," Applied Energy, Elsevier, vol. 353(PA).
    2. Tao Wang & Yunce Zhang, 2018. "Design, Analysis, and Evaluation of a Compact Electromagnetic Energy Harvester from Water Flow for Remote Sensors," Energies, MDPI, vol. 11(6), pages 1-14, June.
    3. Wu, Gang & Jin, Xiao & Li, Qiangtian & Zhao, He & Ahmed, I.R. & Fu, Jianqin, 2016. "Experimental and numerical definition of the extreme heater locations in a closed-open standing wave thermoacoustic system," Applied Energy, Elsevier, vol. 182(C), pages 320-330.
    4. Nazeryan, Mohammad & Lakzian, Esmail, 2018. "Detailed entropy generation analysis of a Wells turbine using the variation of the blade thickness," Energy, Elsevier, vol. 143(C), pages 385-405.
    5. Li, Shen & Li, Qiangtian & Tang, Lin & Yang, Bin & Fu, Jianqin & Clarke, C.A. & Jin, Xiao & Ji, C.Z. & Zhao, He, 2016. "Theoretical and experimental demonstration of minimizing self-excited thermoacoustic oscillations by applying anti-sound technique," Applied Energy, Elsevier, vol. 181(C), pages 399-407.
    6. Zhang, Tingsheng & Kong, Lingji & Zhu, Zhongyin & Wu, Xiaoping & Li, Hai & Zhang, Zutao & Yan, Jinyue, 2024. "An electromagnetic vibration energy harvesting system based on series coupling input mechanism for freight railroads," Applied Energy, Elsevier, vol. 353(PA).
    7. Sun, Hongjun & Yang, Zhen & Li, Jinxia & Ding, Hongbing & Lv, Pengfei, 2024. "Performance evaluation and optimal design for passive turbulence control-based hydrokinetic energy harvester using EWM-based TOPSIS," Energy, Elsevier, vol. 298(C).
    8. Rasel, Mohammad Sala Uddin & Park, Jae-Yeong, 2017. "A sandpaper assisted micro-structured polydimethylsiloxane fabrication for human skin based triboelectric energy harvesting application," Applied Energy, Elsevier, vol. 206(C), pages 150-158.
    9. Zhang, Zhiqing & Dong, Rui & Tan, Dongli & Duan, Lin & Jiang, Feng & Yao, Xiaoxue & Yang, Dixin & Hu, Jingyi & Zhang, Jian & Zhong, Weihuang & Zhao, Ziheng, 2023. "Effect of structural parameters on diesel particulate filter trapping performance of heavy-duty diesel engines based on grey correlation analysis," Energy, Elsevier, vol. 271(C).
    10. Zhou, Zhiyong & Qin, Weiyang & Zhu, Pei, 2017. "Harvesting acoustic energy by coherence resonance of a bi-stable piezoelectric harvester," Energy, Elsevier, vol. 126(C), pages 527-534.
    11. Lincoln Bowen & Jordi Vinolas & José Luis Olazagoitia, 2019. "Design and Potential Power Recovery of Two Types of Energy Harvesting Shock Absorbers," Energies, MDPI, vol. 12(24), pages 1-19, December.
    12. Lin, Teng & Pan, Yu & Chen, Shikui & Zuo, Lei, 2018. "Modeling and field testing of an electromagnetic energy harvester for rail tracks with anchorless mounting," Applied Energy, Elsevier, vol. 213(C), pages 219-226.
    13. Jinshen Tong & Tao Cai, 2022. "Enhancing Thermal Performance, Exergy and Thermodynamics Efficiency of Premixed Methane/Air Micro-Planar Combustor in Micro-Thermophotovoltaic Systems," Energies, MDPI, vol. 16(1), pages 1-21, December.
    14. Pan, Yu & Lin, Teng & Qian, Feng & Liu, Cheng & Yu, Jie & Zuo, Jianyong & Zuo, Lei, 2019. "Modeling and field-test of a compact electromagnetic energy harvester for railroad transportation," Applied Energy, Elsevier, vol. 247(C), pages 309-321.
    15. Xu, Wanrong & Kou, Chuanfu & E, Jiaqiang & Feng, Changling & Tan, Yan, 2024. "Effect analysis on the flow uniformity and pressure drop characteristics of the rotary diesel particulate filter for heavy-duty truck," Energy, Elsevier, vol. 288(C).
    16. Sajib Roy & Md Humayun Kabir & Md Salauddin & Miah A. Halim, 2022. "An Electromagnetic Wind Energy Harvester Based on Rotational Magnet Pole-Pairs for Autonomous IoT Applications," Energies, MDPI, vol. 15(15), pages 1-14, August.
    17. Zhou, Zhiyong & Qin, Weiyang & Zhu, Pei & Shang, Shijie, 2018. "Scavenging wind energy by a Y-shaped bi-stable energy harvester with curved wings," Energy, Elsevier, vol. 153(C), pages 400-412.
    18. Fu, Hailing & Yeatman, Eric M., 2017. "A methodology for low-speed broadband rotational energy harvesting using piezoelectric transduction and frequency up-conversion," Energy, Elsevier, vol. 125(C), pages 152-161.
    19. Li, Dexin & Zuo, Wei & Li, Qingqing & Zhang, Guangde & Zhou, Kun & E, Jiaqiang, 2023. "Effects of pulsating flow on the performance of multi-channel cold plate for thermal management of lithium-ion battery pack," Energy, Elsevier, vol. 273(C).
    20. Wang, Yifeng & Li, Shoutai & Gao, Mingyuan & Ouyang, Huajiang & He, Qing & Wang, Ping, 2021. "Analysis, design and testing of a rolling magnet harvester with diametrical magnetization for train vibration," Applied Energy, Elsevier, vol. 300(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:213:y:2018:i:c:p:353-365. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.