IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v217y2018icp66-74.html
   My bibliography  Save this article

An electromagnetic rotational energy harvester using sprung eccentric rotor, driven by pseudo-walking motion

Author

Listed:
  • Halim, M.A.
  • Rantz, R.
  • Zhang, Q.
  • Gu, L.
  • Yang, K.
  • Roundy, S.

Abstract

In this work, an electromagnetic energy harvesting device using a sprung eccentric rotor has been designed, optimized and characterized to harvest power from pseudo-walking signals (a single frequency sinusoidal signal derived from motion of a driven pendulum that approximates the swing of a human-arm during walking). Our analysis shows that a rotor with an eccentric mass suspended by a torsional spring enhances the mechanical energy captured from low-frequency excitations (e.g., those produced during human walking, running/jogging). An electromagnetic transducer in the sprung eccentric rotor structure converts the captured mechanical energy into electrical energy. An electromechanical dynamic model of a sprung eccentric rotor has been developed and an optimization routine was performed to maximize output power under pseudo-walking excitation. The structure of the electromagnetic transducer was refined using Finite Element Analysis (FEA) simulations. A prototype energy harvester was fabricated and tested in a pseudo wrist-worn situation (by mounting on a mechanical swing-arm) to mimic the low-frequency excitation produced during human walking. A series of pseudo-walking motions was created by varying the swing profile (angle and frequency). The prototype with optimal spring stiffness generates a maximum 61.3 μW average power at ±25° rotational amplitude and 1 Hz frequency which is about 6-times higher than its unsprung counterpart under same excitation condition. The experimental results are in good agreement with the simulation results.

Suggested Citation

  • Halim, M.A. & Rantz, R. & Zhang, Q. & Gu, L. & Yang, K. & Roundy, S., 2018. "An electromagnetic rotational energy harvester using sprung eccentric rotor, driven by pseudo-walking motion," Applied Energy, Elsevier, vol. 217(C), pages 66-74.
  • Handle: RePEc:eee:appene:v:217:y:2018:i:c:p:66-74
    DOI: 10.1016/j.apenergy.2018.02.093
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918302186
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.02.093?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Han, Nuomin & Zhao, Dan & Schluter, Jorg U. & Goh, Ernest Seach & Zhao, He & Jin, Xiao, 2016. "Performance evaluation of 3D printed miniature electromagnetic energy harvesters driven by air flow," Applied Energy, Elsevier, vol. 178(C), pages 672-680.
    2. Rasel, Mohammad Sala Uddin & Park, Jae-Yeong, 2017. "A sandpaper assisted micro-structured polydimethylsiloxane fabrication for human skin based triboelectric energy harvesting application," Applied Energy, Elsevier, vol. 206(C), pages 150-158.
    3. Wang, Xiang & Chen, Changsong & Wang, Na & San, Haisheng & Yu, Yuxi & Halvorsen, Einar & Chen, Xuyuan, 2017. "A frequency and bandwidth tunable piezoelectric vibration energy harvester using multiple nonlinear techniques," Applied Energy, Elsevier, vol. 190(C), pages 368-375.
    4. Abdelmoula, H. & Sharpes, N. & Abdelkefi, A. & Lee, H. & Priya, S., 2017. "Low-frequency Zigzag energy harvesters operating in torsion-dominant mode," Applied Energy, Elsevier, vol. 204(C), pages 413-419.
    5. Younesian, Davood & Alam, Mohammad-Reza, 2017. "Multi-stable mechanisms for high-efficiency and broadband ocean wave energy harvesting," Applied Energy, Elsevier, vol. 197(C), pages 292-302.
    6. Zhang, Yulong & Wang, Tianyang & Luo, Anxin & Hu, Yushen & Li, Xinxin & Wang, Fei, 2018. "Micro electrostatic energy harvester with both broad bandwidth and high normalized power density," Applied Energy, Elsevier, vol. 212(C), pages 362-371.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Zhongjie & Yang, Zhengbao & Naguib, Hani E., 2020. "Introducing revolute joints into piezoelectric energy harvesters," Energy, Elsevier, vol. 192(C).
    2. Rasel, Mohammad Sala Uddin & Park, Jae-Yeong, 2017. "A sandpaper assisted micro-structured polydimethylsiloxane fabrication for human skin based triboelectric energy harvesting application," Applied Energy, Elsevier, vol. 206(C), pages 150-158.
    3. Rashid Naseer & Huliang Dai & Abdessattar Abdelkefi & Lin Wang, 2019. "Comparative Study of Piezoelectric Vortex-Induced Vibration-Based Energy Harvesters with Multi-Stability Characteristics," Energies, MDPI, vol. 13(1), pages 1-24, December.
    4. Lee, Hyeon & Sharpes, Nathan & Abdelmoula, Hichem & Abdelkefi, Abdessattar & Priya, Shashank, 2018. "Higher power generation from torsion-dominant mode in a zigzag shaped two-dimensional energy harvester," Applied Energy, Elsevier, vol. 216(C), pages 494-503.
    5. Li, Zhongjie & Jiang, Xiaomeng & Yin, Peilun & Tang, Lihua & Wu, Hao & Peng, Yan & Luo, Jun & Xie, Shaorong & Pu, Huayan & Wang, Daifeng, 2021. "Towards self-powered technique in underwater robots via a high-efficiency electromagnetic transducer with circularly abrupt magnetic flux density change," Applied Energy, Elsevier, vol. 302(C).
    6. Peng, Yan & Xu, Zhibing & Wang, Min & Li, Zhongjie & Peng, Jinlin & Luo, Jun & Xie, Shaorong & Pu, Huayan & Yang, Zhengbao, 2021. "Investigation of frequency-up conversion effect on the performance improvement of stack-based piezoelectric generators," Renewable Energy, Elsevier, vol. 172(C), pages 551-563.
    7. Yang, Tao & Cao, Qingjie, 2020. "Dynamics and high-efficiency of a novel multi-stable energy harvesting system," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    8. Kim, Jae Woo & Salauddin, Md & Cho, Hyunok & Rasel, M. Salauddin & Park, Jae Yeong, 2019. "Electromagnetic energy harvester based on a finger trigger rotational gear module and an array of disc Halbach magnets," Applied Energy, Elsevier, vol. 250(C), pages 776-785.
    9. Liu, Mingyi & Lin, Rui & Zhou, Shengxi & Yu, Yilun & Ishida, Aki & McGrath, Margarita & Kennedy, Brook & Hajj, Muhammad & Zuo, Lei, 2018. "Design, simulation and experiment of a novel high efficiency energy harvesting paver," Applied Energy, Elsevier, vol. 212(C), pages 966-975.
    10. He, Xianming & Wen, Quan & Lu, Zhuang & Shang, Zhengguo & Wen, Zhiyu, 2018. "A micro-electromechanical systems based vibration energy harvester with aluminum nitride piezoelectric thin film deposited by pulsed direct-current magnetron sputtering," Applied Energy, Elsevier, vol. 228(C), pages 881-890.
    11. Zhang, Yulong & Wang, Tianyang & Luo, Anxin & Hu, Yushen & Li, Xinxin & Wang, Fei, 2018. "Micro electrostatic energy harvester with both broad bandwidth and high normalized power density," Applied Energy, Elsevier, vol. 212(C), pages 362-371.
    12. Zhang, Jinhui & Qin, Lifeng, 2019. "A tunable frequency up-conversion wideband piezoelectric vibration energy harvester for low-frequency variable environment using a novel impact- and rope-driven hybrid mechanism," Applied Energy, Elsevier, vol. 240(C), pages 26-34.
    13. Salazar, R. & Serrano, M. & Abdelkefi, A., 2020. "Fatigue in piezoelectric ceramic vibrational energy harvesting: A review," Applied Energy, Elsevier, vol. 270(C).
    14. Ju, Suna & Ji, Chang-Hyeon, 2018. "Impact-based piezoelectric vibration energy harvester," Applied Energy, Elsevier, vol. 214(C), pages 139-151.
    15. Dang, Shuai & Hou, Chengwei & Shan, Xiaobiao & Sui, Guangdong & Zhang, Xiaofan, 2024. "A novel T-shaped beam bistable piezoelectric energy harvester with a moving magnet," Energy, Elsevier, vol. 300(C).
    16. Philipp Gawron & Thomas M. Wendt & Lukas Stiglmeier & Nikolai Hangst & Urban B. Himmelsbach, 2021. "A Review on Kinetic Energy Harvesting with Focus on 3D Printed Electromagnetic Vibration Harvesters," Energies, MDPI, vol. 14(21), pages 1-24, October.
    17. Yao, Ganzhou & Luo, Zirong & Lu, Zhongyue & Wang, Mangkuan & Shang, Jianzhong & Guerrerob, Josep M., 2023. "Unlocking the potential of wave energy conversion: A comprehensive evaluation of advanced maximum power point tracking techniques and hybrid strategies for sustainable energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    18. Zhou, Xu & Wang, Kangda & Li, Siyu & Wang, Yadong & Sun, Daoyu & Wang, Longlong & He, Zhizhu & Tang, Wei & Liu, Huicong & Jin, Xiaoping & Li, Zhen, 2024. "An ultra-compact lightweight electromagnetic generator enhanced with Halbach magnet array and printed triphase windings," Applied Energy, Elsevier, vol. 353(PA).
    19. Maharjan, Pukar & Salauddin, Md & Cho, Hyunok & Park, Jae Yeong, 2018. "An indoor power line based magnetic field energy harvester for self-powered wireless sensors in smart home applications," Applied Energy, Elsevier, vol. 232(C), pages 398-408.
    20. Zhao, Tingting & Jiang, Weitao & Niu, Dong & Liu, Hongzhong & Chen, Bangdao & Shi, Yongsheng & Yin, Lei & Lu, Bingheng, 2017. "Flexible pyroelectric device for scavenging thermal energy from chemical process and as self-powered temperature monitor," Applied Energy, Elsevier, vol. 195(C), pages 754-760.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:217:y:2018:i:c:p:66-74. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.