IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v247y2019icp403-416.html
   My bibliography  Save this article

Experimental and numerical analysis of a reciprocating piston expander with variable valve timing for small-scale organic Rankine cycle power systems

Author

Listed:
  • Wronski, Jorrit
  • Imran, Muhammad
  • Skovrup, Morten Juel
  • Haglind, Fredrik

Abstract

This paper presents a reciprocating expander concept for organic Rankine cycle applications using a novel rotating variable timing admission valve system, enabling the adjustment of the expansion ratio in real time while the expander is running. An organic Rankine cycle experimental test rig with n-pentane as the working fluid and a single-cylinder reciprocating piston expander was developed. Experiments were conducted for evaporation temperatures ranging from 125 °C to 150 °C and condensation temperatures ranging from 20 °C to 40 °C. The performance of the reciprocating piston expander was investigated in terms of the torque of the expander, pressure inside the cylinder, isentropic efficiency of the expander, and net power produced by the expander. Based on the experimental data, a dynamic model of the system was formulated in the object-oriented language, Modelica. The model was validated using the experimental results and then used to predict the performance of the expander. Special attention was paid to the robust modelling of the valve actuation to avoid computational inefficiencies caused by singularities of state variables or their derivatives. The results indicate that the expander produces up to 2.5 kW of electricity from a low-temperature heat source while operating at pressure ratios ranging from 10 to 16.5 with an isentropic efficiency of approximately 70%. The relative differences between the model and the measurements of the isentropic efficiency and power output of the expander per revolution were ±10% and ±30%, respectively.

Suggested Citation

  • Wronski, Jorrit & Imran, Muhammad & Skovrup, Morten Juel & Haglind, Fredrik, 2019. "Experimental and numerical analysis of a reciprocating piston expander with variable valve timing for small-scale organic Rankine cycle power systems," Applied Energy, Elsevier, vol. 247(C), pages 403-416.
  • Handle: RePEc:eee:appene:v:247:y:2019:i:c:p:403-416
    DOI: 10.1016/j.apenergy.2019.04.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919306592
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.04.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dumont, Olivier & Parthoens, Antoine & Dickes, Rémi & Lemort, Vincent, 2018. "Experimental investigation and optimal performance assessment of four volumetric expanders (scroll, screw, piston and roots) tested in a small-scale organic Rankine cycle system," Energy, Elsevier, vol. 165(PA), pages 1119-1127.
    2. Jiang, Yuntao & Ma, Yitai & Fu, Lin & Li, Minxia, 2013. "Some design features of CO2 two-rolling piston expander," Energy, Elsevier, vol. 55(C), pages 916-924.
    3. Badami, M. & Mura, M., 2009. "Preliminary design and controlling strategies of a small-scale wood waste Rankine Cycle (RC) with a reciprocating steam engine (SE)," Energy, Elsevier, vol. 34(9), pages 1315-1324.
    4. Bianchi, Giuseppe & Cipollone, Roberto, 2015. "Theoretical modeling and experimental investigations for the improvement of the mechanical efficiency in sliding vane rotary compressors," Applied Energy, Elsevier, vol. 142(C), pages 95-107.
    5. Yulia Glavatskaya & Pierre Podevin & Vincent Lemort & Osoko Shonda & Georges Descombes, 2012. "Reciprocating Expander for an Exhaust Heat Recovery Rankine Cycle for a Passenger Car Application," Energies, MDPI, vol. 5(6), pages 1-15, June.
    6. Zheng, N. & Zhao, L. & Wang, X.D. & Tan, Y.T., 2013. "Experimental verification of a rolling-piston expander that applied for low-temperature Organic Rankine Cycle," Applied Energy, Elsevier, vol. 112(C), pages 1265-1274.
    7. Fuhaid Alshammari & Apostolos Karvountzis-Kontakiotis & Apostolos Pesyridis & Muhammad Usman, 2018. "Expander Technologies for Automotive Engine Organic Rankine Cycle Applications," Energies, MDPI, vol. 11(7), pages 1-36, July.
    8. Hu, Jing & Li, Minxia & Zhao, Li & Xia, Borui & Ma, Yitai, 2015. "Improvement and experimental research of CO2 two-rolling piston expander," Energy, Elsevier, vol. 93(P2), pages 2199-2207.
    9. Imran, Muhammad & Usman, Muhammad & Park, Byung-Sik & Lee, Dong-Hyun, 2016. "Volumetric expanders for low grade heat and waste heat recovery applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1090-1109.
    10. Kermani, Maziar & Wallerand, Anna S. & Kantor, Ivan D. & Maréchal, François, 2018. "Generic superstructure synthesis of organic Rankine cycles for waste heat recovery in industrial processes," Applied Energy, Elsevier, vol. 212(C), pages 1203-1225.
    11. Giuffrida, Antonio, 2017. "Improving the semi-empirical modelling of a single-screw expander for small organic Rankine cycles," Applied Energy, Elsevier, vol. 193(C), pages 356-368.
    12. Pantano, Fabio & Capata, Roberto, 2017. "Expander selection for an on board ORC energy recovery system," Energy, Elsevier, vol. 141(C), pages 1084-1096.
    13. Bouvier, Jean-Louis & Lemort, Vincent & Michaux, Ghislain & Salagnac, Patrick & Kientz, Thiebaut, 2016. "Experimental study of an oil-free steam piston expander for micro-combined heat and power systems," Applied Energy, Elsevier, vol. 169(C), pages 788-798.
    14. Hou, Xiaochen & Zhang, Hongguang & Xu, Yonghong & Yu, Fei & Zhao, Tenglong & Tian, Yaming & Yang, Yuxin & Zhao, Rui, 2018. "External load resistance effect on the free piston expander-linear generator for organic Rankine cycle waste heat recovery system," Applied Energy, Elsevier, vol. 212(C), pages 1252-1261.
    15. Landelle, Arnaud & Tauveron, Nicolas & Haberschill, Philippe & Revellin, Rémi & Colasson, Stéphane, 2017. "Organic Rankine cycle design and performance comparison based on experimental database," Applied Energy, Elsevier, vol. 204(C), pages 1172-1187.
    16. Gunnar Latz & Olof Erlandsson & Thomas Skåre & Arnaud Contet & Sven Andersson & Karin Munch, 2016. "Performance Analysis of a Reciprocating Piston Expander and a Plate Type Exhaust Gas Recirculation Boiler in a Water-Based Rankine Cycle for Heat Recovery from a Heavy Duty Diesel Engine," Energies, MDPI, vol. 9(7), pages 1-18, June.
    17. Jia, Boru & Mikalsen, Rikard & Smallbone, Andrew & Zuo, Zhengxing & Feng, Huihua & Roskilly, Anthony Paul, 2016. "Piston motion control of a free-piston engine generator: A new approach using cascade control," Applied Energy, Elsevier, vol. 179(C), pages 1166-1175.
    18. Badr, O. & O'Callaghan, P. W. & Hussein, M. & Probert, S. D., 1984. "Multi-vane expanders as prime movers for low-grade energy organic Rankine-cycle engines," Applied Energy, Elsevier, vol. 16(2), pages 129-146.
    19. Clemente, Stefano & Micheli, Diego & Reini, Mauro & Taccani, Rodolfo, 2013. "Bottoming organic Rankine cycle for a small scale gas turbine: A comparison of different solutions," Applied Energy, Elsevier, vol. 106(C), pages 355-364.
    20. Wenzhi, Gao & Junmeng, Zhai & Guanghua, Li & Qiang, Bian & Liming, Feng, 2013. "Performance evaluation and experiment system for waste heat recovery of diesel engine," Energy, Elsevier, vol. 55(C), pages 226-235.
    21. Ayachi, Fadhel & Ksayer, Elias Boulawz & Neveu, Pierre & Zoughaib, Assaad, 2016. "Experimental investigation and modeling of a hermetic scroll expander," Applied Energy, Elsevier, vol. 181(C), pages 256-267.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Srivastava, Mayank & Sarkar, Jahar & Sarkar, Arnab & Maheshwari, N.K. & Antony, A., 2024. "Thermo-economic feasibility study to utilize ORC technology for waste heat recovery from Indian nuclear power plants," Energy, Elsevier, vol. 298(C).
    2. Dawo, Fabian & Eyerer, Sebastian & Pili, Roberto & Wieland, Christoph & Spliethoff, Hartmut, 2021. "Experimental investigation, model validation and application of twin-screw expanders with different built-in volume ratios," Applied Energy, Elsevier, vol. 282(PA).
    3. Obara, Shin'ya & Tanaka, Ryu, 2021. "Waste heat recovery system for nuclear power plants using the gas hydrate heat cycle," Applied Energy, Elsevier, vol. 292(C).
    4. Yeqiang Zhang & Biao Lei & Zubair Masaud & Muhammad Imran & Yuting Wu & Jinping Liu & Xiaoding Qin & Hafiz Ali Muhammad, 2020. "Waste Heat Recovery from Diesel Engine Exhaust Using a Single-Screw Expander Organic Rankine Cycle System: Experimental Investigation of Exergy Destruction," Energies, MDPI, vol. 13(22), pages 1-15, November.
    5. Zhao, Xiaohuan & Liu, Fang & Wang, Chunhua, 2022. "Effects of different piston combustion chamber heights on heat transfer and energy conversion performance enhancement of a heavy-duty truck diesel engine," Energy, Elsevier, vol. 249(C).
    6. Piotr Kolasiński, 2020. "Domestic Organic Rankine Cycle-Based Cogeneration Systems as a Way to Reduce Dust Emissions in Municipal Heating," Energies, MDPI, vol. 13(15), pages 1-22, August.
    7. Piotr Kolasiński, 2020. "The Method of the Working Fluid Selection for Organic Rankine Cycle (ORC) Systems Employing Volumetric Expanders," Energies, MDPI, vol. 13(3), pages 1-28, January.
    8. Uemura, Yuta & Kawasaki, Toshiyuki & Obara, Shin’ya, 2021. "Analysis of the performance of an electricity generation system using the CO2 hydrate formation and dissociation process for heat recover," Energy, Elsevier, vol. 218(C).
    9. Bianchi, M. & Branchini, L. & De Pascale, A. & Melino, F. & Ottaviano, S. & Peretto, A. & Torricelli, N., 2020. "Replacement of R134a with low-GWP fluids in a kW-size reciprocating piston expander: Performance prediction and design optimization," Energy, Elsevier, vol. 206(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bianchi, M. & Branchini, L. & De Pascale, A. & Melino, F. & Ottaviano, S. & Peretto, A. & Torricelli, N., 2019. "Application and comparison of semi-empirical models for performance prediction of a kW-size reciprocating piston expander," Applied Energy, Elsevier, vol. 249(C), pages 143-156.
    2. Fuhaid Alshammari & Apostolos Karvountzis-Kontakiotis & Apostolos Pesyridis & Muhammad Usman, 2018. "Expander Technologies for Automotive Engine Organic Rankine Cycle Applications," Energies, MDPI, vol. 11(7), pages 1-36, July.
    3. Singer, Gerald & Köll, Rebekka & Aichhorn, Lukas & Pertl, Patrick & Trattner, Alexander, 2023. "Utilizing hydrogen pressure energy by expansion machines – PEM fuel cells in mobile and other potential applications," Applied Energy, Elsevier, vol. 343(C).
    4. Francesconi, Marco & Dori, Edoardo & Antonelli, Marco, 2019. "Analysis of Balje diagrams for a Wankel expander prototype," Applied Energy, Elsevier, vol. 238(C), pages 775-785.
    5. Wenzhi Gao & Wangbo He & Lifeng Wei & Guanghua Li & Ziqi Liu, 2016. "Experimental and Potential Analysis of a Single-Valve Expander for Waste Heat Recovery of a Gasoline Engine," Energies, MDPI, vol. 9(12), pages 1-15, November.
    6. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Wang, Yan & Lei, Biao & Wu, Yuting, 2022. "Performance limits of the single screw expander in organic Rankine cycle with ensemble learning and hyperdimensional evolutionary many-objective optimization algorithm intervention," Energy, Elsevier, vol. 245(C).
    7. Imran, Muhammad & Usman, Muhammad & Park, Byung-Sik & Lee, Dong-Hyun, 2016. "Volumetric expanders for low grade heat and waste heat recovery applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1090-1109.
    8. Xu, Yonghong & Tong, Liang & Zhang, Hongguang & Hou, Xiaochen & Yang, Fubin & Yu, Fei & Yang, Yuxin & Liu, Rong & Tian, Yaming & Zhao, Tenglong, 2018. "Experimental and simulation study of a free piston expander–linear generator for small-scale organic Rankine cycle," Energy, Elsevier, vol. 161(C), pages 776-791.
    9. Francesconi, M. & Caposciutti, G. & Antonelli, M., 2018. "An experimental and numerical analysis of the performances of a Wankel steam expander," Energy, Elsevier, vol. 164(C), pages 615-626.
    10. Bouvier, Jean-Louis & Lemort, Vincent & Michaux, Ghislain & Salagnac, Patrick & Kientz, Thiebaut, 2016. "Experimental study of an oil-free steam piston expander for micro-combined heat and power systems," Applied Energy, Elsevier, vol. 169(C), pages 788-798.
    11. Gaosheng Li & Hongguang Zhang & Fubin Yang & Songsong Song & Ying Chang & Fei Yu & Jingfu Wang & Baofeng Yao, 2016. "Preliminary Development of a Free Piston Expander–Linear Generator for Small-Scale Organic Rankine Cycle (ORC) Waste Heat Recovery System," Energies, MDPI, vol. 9(4), pages 1-18, April.
    12. Moradi, Ramin & Habib, Emanuele & Bocci, Enrico & Cioccolanti, Luca, 2020. "Investigation on the use of a novel regenerative flow turbine in a micro-scale Organic Rankine Cycle unit," Energy, Elsevier, vol. 210(C).
    13. Campana, Claudio & Cioccolanti, Luca & Renzi, Massimiliano & Caresana, Flavio, 2019. "Experimental analysis of a small-scale scroll expander for low-temperature waste heat recovery in Organic Rankine Cycle," Energy, Elsevier, vol. 187(C).
    14. Tian, Yafen & Xing, Ziwen & He, Zhilong & Wu, Huagen, 2017. "Modeling and performance analysis of twin-screw steam expander under fluctuating operating conditions in steam pipeline pressure energy recovery applications," Energy, Elsevier, vol. 141(C), pages 692-701.
    15. Li, Guoqiang & Lei, Biao & Wu, Yuting & Zhi, Ruiping & Zhao, Yingkun & Guo, Zhiyu & Liu, Guangyu & Ma, Chongfang, 2018. "Influence of inlet pressure and rotational speed on the performance of high pressure single screw expander prototype," Energy, Elsevier, vol. 147(C), pages 279-285.
    16. Kutlu, Cagri & Erdinc, Mehmet Tahir & Li, Jing & Su, Yuehong & Pei, Gang & Gao, Guangtao & Riffat, Saffa, 2020. "Evaluate the validity of the empirical correlations of clearance and friction coefficients to improve a scroll expander semi-empirical model," Energy, Elsevier, vol. 202(C).
    17. Fabio Fatigati & Marco Di Bartolomeo & Davide Di Battista & Roberto Cipollone, 2020. "Experimental Validation of a New Modeling for the Design Optimization of a Sliding Vane Rotary Expander Operating in an ORC-Based Power Unit," Energies, MDPI, vol. 13(16), pages 1-23, August.
    18. Marcin Wołowicz & Piotr Kolasiński & Krzysztof Badyda, 2021. "Modern Small and Microcogeneration Systems—A Review," Energies, MDPI, vol. 14(3), pages 1-47, February.
    19. Ziviani, D. & Gusev, S. & Lecompte, S. & Groll, E.A. & Braun, J.E. & Horton, W.T. & van den Broek, M. & De Paepe, M., 2016. "Characterizing the performance of a single-screw expander in a small-scale organic Rankine cycle for waste heat recovery," Applied Energy, Elsevier, vol. 181(C), pages 155-170.
    20. Piotr Kolasiński, 2020. "The Method of the Working Fluid Selection for Organic Rankine Cycle (ORC) Systems Employing Volumetric Expanders," Energies, MDPI, vol. 13(3), pages 1-28, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:247:y:2019:i:c:p:403-416. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.