IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v5y2012i6p1751-1765d18137.html
   My bibliography  Save this article

Reciprocating Expander for an Exhaust Heat Recovery Rankine Cycle for a Passenger Car Application

Author

Listed:
  • Yulia Glavatskaya

    (Conservatoire National des Arts et Métiers, rue Saint-Martin, Paris 75003, France
    Laboratoir thermidynamique, Université de Liège, Campus du Sart Tilman-Bât. B49, Liège B-4000, Belgium
    Direction de recherche et technologies avancées, Renault, 1 avenue de Golf, Guyancourt 78288, France)

  • Pierre Podevin

    (Conservatoire National des Arts et Métiers, rue Saint-Martin, Paris 75003, France)

  • Vincent Lemort

    (Laboratoir thermidynamique, Université de Liège, Campus du Sart Tilman-Bât. B49, Liège B-4000, Belgium)

  • Osoko Shonda

    (Direction de recherche et technologies avancées, Renault, 1 avenue de Golf, Guyancourt 78288, France)

  • Georges Descombes

    (Conservatoire National des Arts et Métiers, rue Saint-Martin, Paris 75003, France)

Abstract

Nowadays, on average, two thirds of the fuel energy consumed by an engine is wasted through the exhaust gases and the cooling liquid. The recovery of this energy would enable a substantial reduction in fuel consumption. One solution is to integrate a heat recovery system based on a steam Rankine cycle. The key component in such a system is the expander, which has a strong impact on the system’s performance. A survey of different expander technologies leads us to select the reciprocating expander as the most promising one for an automotive application. This paper therefore proposes a steady-state semi-empirical model of the expander device developed under the Engineering Equation Solver (EES) environment. The ambient and mechanical losses as well as internal leakage were taken into account by the model. By exploiting the expander manufacturer’s data, all the parameters of the expander model were identified. The model computes the mass flow rate, the power output delivered and the exhaust enthalpy of the steam. The maximum deviation between predictions and measurement data is 4.7%. A performance study of the expander is carried out and shows that the isentropic efficiency is quite high and increases with the expander rotary speed. The mechanical efficiency depends on mechanical losses which are quite high, approximately 90%. The volumetric efficiency was also evaluated.

Suggested Citation

  • Yulia Glavatskaya & Pierre Podevin & Vincent Lemort & Osoko Shonda & Georges Descombes, 2012. "Reciprocating Expander for an Exhaust Heat Recovery Rankine Cycle for a Passenger Car Application," Energies, MDPI, vol. 5(6), pages 1-15, June.
  • Handle: RePEc:gam:jeners:v:5:y:2012:i:6:p:1751-1765:d:18137
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/5/6/1751/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/5/6/1751/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Badami, M. & Mura, M., 2009. "Preliminary design and controlling strategies of a small-scale wood waste Rankine Cycle (RC) with a reciprocating steam engine (SE)," Energy, Elsevier, vol. 34(9), pages 1315-1324.
    2. Badr, O. & O'Callaghan, P.W. & Probert, S.D., 1984. "Performances of Rankine-cycle engines as functions of their expanders' efficiencies," Applied Energy, Elsevier, vol. 18(1), pages 15-27.
    3. Clemente, Stefano & Micheli, Diego & Reini, Mauro & Taccani, Rodolfo, 2012. "Energy efficiency analysis of Organic Rankine Cycles with scroll expanders for cogenerative applications," Applied Energy, Elsevier, vol. 97(C), pages 792-801.
    4. Badr, O. & Naik, S. & O'Callaghan, P. W. & Probert, S. D., 1991. "Rotary Wankel engines as expansion devices in steam Rankine-cycle engines," Applied Energy, Elsevier, vol. 39(1), pages 59-76.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesconi, Marco & Antonelli, Marco, 2017. "A numerical model for the prediction of the fluid dynamic and mechanical losses of a Wankel-type expansion device," Applied Energy, Elsevier, vol. 205(C), pages 225-235.
    2. Antonelli, M. & Baccioli, A. & Francesconi, M. & Desideri, U. & Martorano, L., 2015. "Electrical production of a small size Concentrated Solar Power plant with compound parabolic collectors," Renewable Energy, Elsevier, vol. 83(C), pages 1110-1118.
    3. Antonelli, M. & Baccioli, A. & Francesconi, M. & Desideri, U. & Martorano, L., 2014. "Operating maps of a rotary engine used as an expander for micro-generation with various working fluids," Applied Energy, Elsevier, vol. 113(C), pages 742-750.
    4. Fuhaid Alshammari & Apostolos Karvountzis-Kontakiotis & Apostolos Pesyridis & Muhammad Usman, 2018. "Expander Technologies for Automotive Engine Organic Rankine Cycle Applications," Energies, MDPI, vol. 11(7), pages 1-36, July.
    5. Clemente, Stefano & Micheli, Diego & Reini, Mauro & Taccani, Rodolfo, 2013. "Bottoming organic Rankine cycle for a small scale gas turbine: A comparison of different solutions," Applied Energy, Elsevier, vol. 106(C), pages 355-364.
    6. Wenzhi, Gao & Junmeng, Zhai & Guanghua, Li & Qiang, Bian & Liming, Feng, 2013. "Performance evaluation and experiment system for waste heat recovery of diesel engine," Energy, Elsevier, vol. 55(C), pages 226-235.
    7. Gaosheng Li & Hongguang Zhang & Fubin Yang & Songsong Song & Ying Chang & Fei Yu & Jingfu Wang & Baofeng Yao, 2016. "Preliminary Development of a Free Piston Expander–Linear Generator for Small-Scale Organic Rankine Cycle (ORC) Waste Heat Recovery System," Energies, MDPI, vol. 9(4), pages 1-18, April.
    8. Li, Tailu & Zhu, Jialing & Hu, Kaiyong & Kang, Zhenhua & Zhang, Wei, 2014. "Implementation of PDORC (parallel double-evaporator organic Rankine cycle) to enhance power output in oilfield," Energy, Elsevier, vol. 68(C), pages 680-687.
    9. Declaye, Sébastien & Quoilin, Sylvain & Guillaume, Ludovic & Lemort, Vincent, 2013. "Experimental study on an open-drive scroll expander integrated into an ORC (Organic Rankine Cycle) system with R245fa as working fluid," Energy, Elsevier, vol. 55(C), pages 173-183.
    10. Li, Guoqiang & Lei, Biao & Wu, Yuting & Zhi, Ruiping & Zhao, Yingkun & Guo, Zhiyu & Liu, Guangyu & Ma, Chongfang, 2018. "Influence of inlet pressure and rotational speed on the performance of high pressure single screw expander prototype," Energy, Elsevier, vol. 147(C), pages 279-285.
    11. Dong, Hye-Won & Jeong, Jae-Weon, 2020. "Energy benefits of organic Rankine cycle in a liquid desiccant and evaporative cooling-assisted air conditioning system," Renewable Energy, Elsevier, vol. 147(P1), pages 2358-2373.
    12. Al-Mousawi, Fadhel Noraldeen & Al-Dadah, Raya & Mahmoud, Saad, 2016. "Low grade heat driven adsorption system for cooling and power generation with small-scale radial inflow turbine," Applied Energy, Elsevier, vol. 183(C), pages 1302-1316.
    13. Song, Panpan & Wei, Mingshan & Liu, Zhen & Zhao, Ben, 2015. "Effects of suction port arrangements on a scroll expander for a small scale ORC system based on CFD approach," Applied Energy, Elsevier, vol. 150(C), pages 274-285.
    14. Bianchi, M. & Branchini, L. & De Pascale, A. & Melino, F. & Peretto, A. & Archetti, D. & Campana, F. & Ferrari, T. & Rossetti, N., 2019. "Feasibility of ORC application in natural gas compressor stations," Energy, Elsevier, vol. 173(C), pages 1-15.
    15. Braimakis, Konstantinos & Karellas, Sotirios, 2017. "Integrated thermoeconomic optimization of standard and regenerative ORC for different heat source types and capacities," Energy, Elsevier, vol. 121(C), pages 570-598.
    16. Wenzhi Gao & Wangbo He & Lifeng Wei & Guanghua Li & Ziqi Liu, 2016. "Experimental and Potential Analysis of a Single-Valve Expander for Waste Heat Recovery of a Gasoline Engine," Energies, MDPI, vol. 9(12), pages 1-15, November.
    17. Antonelli, Marco & Martorano, Luigi, 2012. "A study on the rotary steam engine for distributed generation in small size power plants," Applied Energy, Elsevier, vol. 97(C), pages 642-647.
    18. Ayachi, Fadhel & Ksayer, Elias Boulawz & Neveu, Pierre & Zoughaib, Assaad, 2016. "Experimental investigation and modeling of a hermetic scroll expander," Applied Energy, Elsevier, vol. 181(C), pages 256-267.
    19. Pezzuolo, Alex & Benato, Alberto & Stoppato, Anna & Mirandola, Alberto, 2016. "The ORC-PD: A versatile tool for fluid selection and Organic Rankine Cycle unit design," Energy, Elsevier, vol. 102(C), pages 605-620.
    20. Frikha, Sobhi & Driss, Zied & Hagui, Mohamed Aymen, 2015. "Computational study of the diffuser angle effect in the design of a waste heat recovery system for oil field cabins," Energy, Elsevier, vol. 84(C), pages 219-238.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:5:y:2012:i:6:p:1751-1765:d:18137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.