IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v249y2019icp143-156.html
   My bibliography  Save this article

Application and comparison of semi-empirical models for performance prediction of a kW-size reciprocating piston expander

Author

Listed:
  • Bianchi, M.
  • Branchini, L.
  • De Pascale, A.
  • Melino, F.
  • Ottaviano, S.
  • Peretto, A.
  • Torricelli, N.

Abstract

This work describes modeling and performance prediction of a kW-size reciprocating piston expander adopted in micro-Organic Rankine Cycle (ORC) energy systems. Two selected semi-empirical models have been opportunely adapted, calibrated and validated over a full set of experimental data to detect the best method for the simulation of a reciprocating machine. The first modelling approach is based on polynomial correlations of the expander efficiencies and it has been extended to account for the heat losses to ambient. The second one is a lumped parameters model using few key geometrical data and some physical equations to describe the process.

Suggested Citation

  • Bianchi, M. & Branchini, L. & De Pascale, A. & Melino, F. & Ottaviano, S. & Peretto, A. & Torricelli, N., 2019. "Application and comparison of semi-empirical models for performance prediction of a kW-size reciprocating piston expander," Applied Energy, Elsevier, vol. 249(C), pages 143-156.
  • Handle: RePEc:eee:appene:v:249:y:2019:i:c:p:143-156
    DOI: 10.1016/j.apenergy.2019.04.070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919307317
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.04.070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dumont, Olivier & Parthoens, Antoine & Dickes, Rémi & Lemort, Vincent, 2018. "Experimental investigation and optimal performance assessment of four volumetric expanders (scroll, screw, piston and roots) tested in a small-scale organic Rankine cycle system," Energy, Elsevier, vol. 165(PA), pages 1119-1127.
    2. Quoilin, Sylvain & Lemort, Vincent & Lebrun, Jean, 2010. "Experimental study and modeling of an Organic Rankine Cycle using scroll expander," Applied Energy, Elsevier, vol. 87(4), pages 1260-1268, April.
    3. Bouvier, Jean-Louis & Lemort, Vincent & Michaux, Ghislain & Salagnac, Patrick & Kientz, Thiebaut, 2016. "Experimental study of an oil-free steam piston expander for micro-combined heat and power systems," Applied Energy, Elsevier, vol. 169(C), pages 788-798.
    4. D'Amico, F. & Pallis, P. & Leontaritis, A.D. & Karellas, S. & Kakalis, N.M. & Rech, S. & Lazzaretto, A., 2018. "Semi-empirical model of a multi-diaphragm pump in an Organic Rankine Cycle (ORC) experimental unit," Energy, Elsevier, vol. 143(C), pages 1056-1071.
    5. Preetham, B.S. & Weiss, L., 2016. "Investigations of a new free piston expander engine cycle," Energy, Elsevier, vol. 106(C), pages 535-545.
    6. Hou, Xiaochen & Zhang, Hongguang & Xu, Yonghong & Yu, Fei & Zhao, Tenglong & Tian, Yaming & Yang, Yuxin & Zhao, Rui, 2018. "External load resistance effect on the free piston expander-linear generator for organic Rankine cycle waste heat recovery system," Applied Energy, Elsevier, vol. 212(C), pages 1252-1261.
    7. Ziviani, D. & Gusev, S. & Lecompte, S. & Groll, E.A. & Braun, J.E. & Horton, W.T. & van den Broek, M. & De Paepe, M., 2016. "Characterizing the performance of a single-screw expander in a small-scale organic Rankine cycle for waste heat recovery," Applied Energy, Elsevier, vol. 181(C), pages 155-170.
    8. Wang, Yaodong & Chen, Lin & Jia, Boru & Roskilly, Anthony Paul, 2017. "Experimental study of the operation characteristics of an air-driven free-piston linear expander," Applied Energy, Elsevier, vol. 195(C), pages 93-99.
    9. Pereira, João S. & Ribeiro, José B. & Mendes, Ricardo & Vaz, Gilberto C. & André, Jorge C., 2018. "ORC based micro-cogeneration systems for residential application – A state of the art review and current challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 728-743.
    10. Yulia Glavatskaya & Pierre Podevin & Vincent Lemort & Osoko Shonda & Georges Descombes, 2012. "Reciprocating Expander for an Exhaust Heat Recovery Rankine Cycle for a Passenger Car Application," Energies, MDPI, vol. 5(6), pages 1-15, June.
    11. Quoilin, Sylvain & Broek, Martijn Van Den & Declaye, Sébastien & Dewallef, Pierre & Lemort, Vincent, 2013. "Techno-economic survey of Organic Rankine Cycle (ORC) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 168-186.
    12. Ziviani, Davide & James, Nelson A. & Accorsi, Felipe A. & Braun, James E. & Groll, Eckhard A., 2018. "Experimental and numerical analyses of a 5 kWe oil-free open-drive scroll expander for small-scale organic Rankine cycle (ORC) applications," Applied Energy, Elsevier, vol. 230(C), pages 1140-1156.
    13. Burugupally, Sindhu Preetham & Weiss, Leland, 2019. "Design and performance of a miniature free piston expander," Energy, Elsevier, vol. 170(C), pages 611-618.
    14. Giuffrida, Antonio, 2017. "Improving the semi-empirical modelling of a single-screw expander for small organic Rankine cycles," Applied Energy, Elsevier, vol. 193(C), pages 356-368.
    15. Ayachi, Fadhel & Ksayer, Elias Boulawz & Neveu, Pierre & Zoughaib, Assaad, 2016. "Experimental investigation and modeling of a hermetic scroll expander," Applied Energy, Elsevier, vol. 181(C), pages 256-267.
    16. Bianchi, M. & De Pascale, A., 2011. "Bottoming cycles for electric energy generation: Parametric investigation of available and innovative solutions for the exploitation of low and medium temperature heat sources," Applied Energy, Elsevier, vol. 88(5), pages 1500-1509, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kutlu, Cagri & Erdinc, Mehmet Tahir & Li, Jing & Su, Yuehong & Pei, Gang & Gao, Guangtao & Riffat, Saffa, 2020. "Evaluate the validity of the empirical correlations of clearance and friction coefficients to improve a scroll expander semi-empirical model," Energy, Elsevier, vol. 202(C).
    2. Nicola Casari & Ettore Fadiga & Michele Pinelli & Saverio Randi & Alessio Suman, 2019. "Pressure Pulsation and Cavitation Phenomena in a Micro-ORC System," Energies, MDPI, vol. 12(11), pages 1-18, June.
    3. Dawo, Fabian & Eyerer, Sebastian & Pili, Roberto & Wieland, Christoph & Spliethoff, Hartmut, 2021. "Experimental investigation, model validation and application of twin-screw expanders with different built-in volume ratios," Applied Energy, Elsevier, vol. 282(PA).
    4. Fabio Fatigati & Marco Di Bartolomeo & Davide Di Battista & Roberto Cipollone, 2020. "Experimental Validation of a New Modeling for the Design Optimization of a Sliding Vane Rotary Expander Operating in an ORC-Based Power Unit," Energies, MDPI, vol. 13(16), pages 1-23, August.
    5. Ancona, Maria Alessandra & Bianchi, Michele & Branchini, Lisa & De Pascale, Andrea & Melino, Francesco & Peretto, Antonio & Poletto, Chiara & Torricelli, Noemi, 2022. "Solar driven micro-ORC system assessment for residential application," Renewable Energy, Elsevier, vol. 195(C), pages 167-181.
    6. Xu, Weicong & Zhao, Li & Mao, Samuel S. & Deng, Shuai, 2020. "Towards novel low temperature thermodynamic cycle: A critical review originated from organic Rankine cycle," Applied Energy, Elsevier, vol. 270(C).
    7. Kyle Grimaldi & Ahmad Najjaran & Zhiwei Ma & Huashan Bao & Tony Roskilly, 2023. "Dynamic Modelling and Experimental Validation of a Pneumatic Radial Piston Motor," Energies, MDPI, vol. 16(4), pages 1-18, February.
    8. Bianchi, M. & Branchini, L. & De Pascale, A. & Melino, F. & Ottaviano, S. & Peretto, A. & Torricelli, N., 2020. "Replacement of R134a with low-GWP fluids in a kW-size reciprocating piston expander: Performance prediction and design optimization," Energy, Elsevier, vol. 206(C).
    9. Ettore Fadiga & Nicola Casari & Alessio Suman & Michele Pinelli, 2020. "Structured Mesh Generation and Numerical Analysis of a Scroll Expander in an Open-Source Environment," Energies, MDPI, vol. 13(3), pages 1-13, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kutlu, Cagri & Erdinc, Mehmet Tahir & Li, Jing & Su, Yuehong & Pei, Gang & Gao, Guangtao & Riffat, Saffa, 2020. "Evaluate the validity of the empirical correlations of clearance and friction coefficients to improve a scroll expander semi-empirical model," Energy, Elsevier, vol. 202(C).
    2. Wronski, Jorrit & Imran, Muhammad & Skovrup, Morten Juel & Haglind, Fredrik, 2019. "Experimental and numerical analysis of a reciprocating piston expander with variable valve timing for small-scale organic Rankine cycle power systems," Applied Energy, Elsevier, vol. 247(C), pages 403-416.
    3. Jin, Yunli & Gao, Naiping & Zhu, Tong, 2022. "Effect of resistive load characteristics on the performance of Organic Rankine cycle (ORC)," Energy, Elsevier, vol. 246(C).
    4. Campana, Claudio & Cioccolanti, Luca & Renzi, Massimiliano & Caresana, Flavio, 2019. "Experimental analysis of a small-scale scroll expander for low-temperature waste heat recovery in Organic Rankine Cycle," Energy, Elsevier, vol. 187(C).
    5. Giuffrida, Antonio, 2017. "Improving the semi-empirical modelling of a single-screw expander for small organic Rankine cycles," Applied Energy, Elsevier, vol. 193(C), pages 356-368.
    6. Bianchi, M. & Branchini, L. & De Pascale, A. & Melino, F. & Ottaviano, S. & Peretto, A. & Torricelli, N., 2020. "Replacement of R134a with low-GWP fluids in a kW-size reciprocating piston expander: Performance prediction and design optimization," Energy, Elsevier, vol. 206(C).
    7. Xinxin Zhang & Yin Zhang & Min Cao & Jingfu Wang & Yuting Wu & Chongfang Ma, 2019. "Working Fluid Selection for Organic Rankine Cycle Using Single-Screw Expander," Energies, MDPI, vol. 12(16), pages 1-23, August.
    8. Xu, Yonghong & Tong, Liang & Zhang, Hongguang & Hou, Xiaochen & Yang, Fubin & Yu, Fei & Yang, Yuxin & Liu, Rong & Tian, Yaming & Zhao, Tenglong, 2018. "Experimental and simulation study of a free piston expander–linear generator for small-scale organic Rankine cycle," Energy, Elsevier, vol. 161(C), pages 776-791.
    9. Singer, Gerald & Köll, Rebekka & Aichhorn, Lukas & Pertl, Patrick & Trattner, Alexander, 2023. "Utilizing hydrogen pressure energy by expansion machines – PEM fuel cells in mobile and other potential applications," Applied Energy, Elsevier, vol. 343(C).
    10. Francesconi, M. & Caposciutti, G. & Antonelli, M., 2018. "An experimental and numerical analysis of the performances of a Wankel steam expander," Energy, Elsevier, vol. 164(C), pages 615-626.
    11. Yang, Fubin & Zhang, Hongguang & Hou, Xiaochen & Tian, Yaming & Xu, Yonghong, 2019. "Experimental study and artificial neural network based prediction of a free piston expander-linear generator for small scale organic Rankine cycle," Energy, Elsevier, vol. 175(C), pages 630-644.
    12. Eppinger, Bernd & Zigan, Lars & Karl, Jürgen & Will, Stefan, 2020. "Pumped thermal energy storage with heat pump-ORC-systems: Comparison of latent and sensible thermal storages for various fluids," Applied Energy, Elsevier, vol. 280(C).
    13. Francesconi, Marco & Dori, Edoardo & Antonelli, Marco, 2019. "Analysis of Balje diagrams for a Wankel expander prototype," Applied Energy, Elsevier, vol. 238(C), pages 775-785.
    14. Fuhaid Alshammari & Apostolos Karvountzis-Kontakiotis & Apostolos Pesyridis & Muhammad Usman, 2018. "Expander Technologies for Automotive Engine Organic Rankine Cycle Applications," Energies, MDPI, vol. 11(7), pages 1-36, July.
    15. Baoying Peng & Kai Zhang & Liang Tong & Yonghong Xu, 2023. "Research on Gas Recycling of Free-Piston Expander–Linear Generator for Organic Rankine Cycle of Vehicle," Sustainability, MDPI, vol. 15(18), pages 1-16, September.
    16. Zhuxian Liu & Zhong Wu & Yonghong Xu & Hongguang Zhang & Jian Zhang & Fubin Yang, 2022. "Performance Investigation of Single–Piston Free Piston Expander–Linear Generator with Multi–Parameter Based on Simulation Model," Energies, MDPI, vol. 15(23), pages 1-28, November.
    17. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Wang, Yan & Lei, Biao & Wu, Yuting, 2022. "Performance limits of the single screw expander in organic Rankine cycle with ensemble learning and hyperdimensional evolutionary many-objective optimization algorithm intervention," Energy, Elsevier, vol. 245(C).
    18. Peter Collings & Zhibin Yu, 2017. "Numerical Analysis of an Organic Rankine Cycle with Adjustable Working Fluid Composition, a Volumetric Expander and a Recuperator," Energies, MDPI, vol. 10(4), pages 1-21, March.
    19. Casari, Nicola & Fadiga, Ettore & Pinelli, Michele & Randi, Saverio & Suman, Alessio & Ziviani, Davide, 2020. "Investigation of flow characteristics in a single screw expander: A numerical approach," Energy, Elsevier, vol. 213(C).
    20. Dawo, Fabian & Eyerer, Sebastian & Pili, Roberto & Wieland, Christoph & Spliethoff, Hartmut, 2021. "Experimental investigation, model validation and application of twin-screw expanders with different built-in volume ratios," Applied Energy, Elsevier, vol. 282(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:249:y:2019:i:c:p:143-156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.