IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v93y2015ip2p2199-2207.html
   My bibliography  Save this article

Improvement and experimental research of CO2 two-rolling piston expander

Author

Listed:
  • Hu, Jing
  • Li, Minxia
  • Zhao, Li
  • Xia, Borui
  • Ma, Yitai

Abstract

Owing to the poor performance of the previous CO2 two-rolling piston expander prototype, improvements were made to increase its efficiency. The improvement measures included increasing the expansion ratio by minimizing the size of the intermediate channel and adopting some sealing methods to block the leakages, such as integrating the intermediate plate and filling O-rings in the seal grooves of the end covers. To reduce the leakage and irreversible losses, lubrication of the expander was investigated as a measure. The improved expander was tested in the CO2 water-to-water heat pump system. The experimental results showed that the revised expander had a much higher efficiency compared to the primary one, reaching a maximum of 77% at the revolution speed of 867 rpm, and a maximum recovered expansion work of 242 W at the revolution speed of 770 rpm. However, further improvement of the expander is necessary because the measured parameters of the prototype do not yet approach the design values.

Suggested Citation

  • Hu, Jing & Li, Minxia & Zhao, Li & Xia, Borui & Ma, Yitai, 2015. "Improvement and experimental research of CO2 two-rolling piston expander," Energy, Elsevier, vol. 93(P2), pages 2199-2207.
  • Handle: RePEc:eee:energy:v:93:y:2015:i:p2:p:2199-2207
    DOI: 10.1016/j.energy.2015.10.097
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215014747
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.10.097?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Yuntao & Ma, Yitai & Fu, Lin & Li, Minxia, 2013. "Some design features of CO2 two-rolling piston expander," Energy, Elsevier, vol. 55(C), pages 916-924.
    2. Yamada, Noboru & Watanabe, Masataka & Hoshi, Akira, 2013. "Experiment on pumpless Rankine-type cycle with scroll expander," Energy, Elsevier, vol. 49(C), pages 137-145.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bo Zhang & Liu Chen & Lang Liu & Xiaoyan Zhang & Mei Wang & Changfa Ji & KI-IL Song, 2018. "Parameter Sensitivity Study for Typical Expander-Based Transcritical CO 2 Refrigeration Cycles," Energies, MDPI, vol. 11(5), pages 1-20, May.
    2. Wronski, Jorrit & Imran, Muhammad & Skovrup, Morten Juel & Haglind, Fredrik, 2019. "Experimental and numerical analysis of a reciprocating piston expander with variable valve timing for small-scale organic Rankine cycle power systems," Applied Energy, Elsevier, vol. 247(C), pages 403-416.
    3. Yap, Ken Shaun & Ooi, Kim Tiow & Chakraborty, Anutosh, 2018. "Analysis of the novel cross vane expander-compressor: Mathematical modelling and experimental study," Energy, Elsevier, vol. 145(C), pages 626-637.
    4. Rajib Uddin Rony & Huojun Yang & Sumathy Krishnan & Jongchul Song, 2019. "Recent Advances in Transcritical CO 2 (R744) Heat Pump System: A Review," Energies, MDPI, vol. 12(3), pages 1-35, January.
    5. Murthy, Anarghya Ananda & Krishan, Gopal & Shenoy, Praveen & Patil, Ishwaragouda S, 2024. "Theoretical, CFD modelling and experimental investigation of a four-intersecting-vane rotary expander," Applied Energy, Elsevier, vol. 353(PB).
    6. Francesconi, Marco & Dori, Edoardo & Antonelli, Marco, 2019. "Analysis of Balje diagrams for a Wankel expander prototype," Applied Energy, Elsevier, vol. 238(C), pages 775-785.
    7. Singh, Simarpreet & Dasgupta, MS, 2016. "Evaluation of research on CO2 trans-critical work recovery expander using multi attribute decision making methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 119-129.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Imran, Muhammad & Usman, Muhammad & Park, Byung-Sik & Lee, Dong-Hyun, 2016. "Volumetric expanders for low grade heat and waste heat recovery applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1090-1109.
    2. Francesconi, Marco & Antonelli, Marco, 2017. "A numerical model for the prediction of the fluid dynamic and mechanical losses of a Wankel-type expansion device," Applied Energy, Elsevier, vol. 205(C), pages 225-235.
    3. Yamada, Noboru & Tominaga, Yoshihito & Yoshida, Takanori, 2014. "Demonstration of 10-Wp micro organic Rankine cycle generator for low-grade heat recovery," Energy, Elsevier, vol. 78(C), pages 806-813.
    4. Jon Munch-Petersen, 2018. "Public Participation in Environmental Impact Assessment of Hydropower Plants in Nepal: A Contextspecific Approach," Working Papers id:12843, eSocialSciences.
    5. Gao, P. & Wang, L.W. & Wang, R.Z. & Jiang, L. & Zhou, Z.S., 2015. "Experimental investigation on a small pumpless ORC (organic rankine cycle) system driven by the low temperature heat source," Energy, Elsevier, vol. 91(C), pages 324-333.
    6. Wang, Wei & Wu, Yu-ting & Ma, Chong-fang & Xia, Guo-dong & Wang, Jing-fu, 2013. "Experimental study on the performance of single screw expanders by gap adjustment," Energy, Elsevier, vol. 62(C), pages 379-384.
    7. Wronski, Jorrit & Imran, Muhammad & Skovrup, Morten Juel & Haglind, Fredrik, 2019. "Experimental and numerical analysis of a reciprocating piston expander with variable valve timing for small-scale organic Rankine cycle power systems," Applied Energy, Elsevier, vol. 247(C), pages 403-416.
    8. Jiang, Yuntao & Ma, Yitai & Fu, Lin & Li, Minxia, 2013. "Some design features of CO2 two-rolling piston expander," Energy, Elsevier, vol. 55(C), pages 916-924.
    9. Bao, Huashan & Ma, Zhiwei & Roskilly, Anthony Paul, 2017. "Chemisorption power generation driven by low grade heat – Theoretical analysis and comparison with pumpless ORC," Applied Energy, Elsevier, vol. 186(P3), pages 282-290.
    10. Ibarra, Mercedes & Rovira, Antonio & Alarcón-Padilla, Diego-César & Blanco, Julián, 2014. "Performance of a 5kWe Organic Rankine Cycle at part-load operation," Applied Energy, Elsevier, vol. 120(C), pages 147-158.
    11. Zhang, Zhenying & Li, Minxia & Ma, Yitai & Gong, Xiufeng, 2015. "Experimental investigation on a turbo expander substituted for throttle valve in the subcritical refrigeration system," Energy, Elsevier, vol. 79(C), pages 195-202.
    12. Jiang, L. & Lu, H.T. & Wang, L.W. & Gao, P. & Zhu, F.Q. & Wang, R.Z. & Roskilly, A.P., 2017. "Investigation on a small-scale pumpless Organic Rankine Cycle (ORC) system driven by the low temperature heat source," Applied Energy, Elsevier, vol. 195(C), pages 478-486.
    13. Richardson, E.S., 2016. "Thermodynamic performance of new thermofluidic feed pumps for Organic Rankine Cycle applications," Applied Energy, Elsevier, vol. 161(C), pages 75-84.
    14. Mascuch, Jakub & Novotny, Vaclav & Vodicka, Vaclav & Spale, Jan & Zeleny, Zbynek, 2020. "Experimental development of a kilowatt-scale biomass fired micro – CHP unit based on ORC with rotary vane expander," Renewable Energy, Elsevier, vol. 147(P3), pages 2882-2895.
    15. Zhang, Xuefeng & Wang, Liwei & Wang, Zixuan & Wang, Lemin & Zhang, Zihan, 2022. "Non-steady thermodynamic characteristics of a pilot-scale organic Rankine cycle system with a thermally-driven pump," Energy, Elsevier, vol. 252(C).
    16. Yap, Ken Shaun & Ooi, Kim Tiow & Chakraborty, Anutosh, 2018. "Analysis of the novel cross vane expander-compressor: Mathematical modelling and experimental study," Energy, Elsevier, vol. 145(C), pages 626-637.
    17. Murthy, Anarghya Ananda & Norris, Stuart & Subiantoro, Alison, 2022. "Experimental investigation of internal leakages and effects of lubricating oil on the performance of a four-intersecting-vane rotary expander," Energy, Elsevier, vol. 238(PB).
    18. Dai, Baomin & Liu, Shengchun & Zhu, Kai & Sun, Zhili & Ma, Yitai, 2017. "Thermodynamic performance evaluation of transcritical carbon dioxide refrigeration cycle integrated with thermoelectric subcooler and expander," Energy, Elsevier, vol. 122(C), pages 787-800.
    19. Ruiqi Wang & Long Jiang & Zhiwei Ma & Abigail Gonzalez-Diaz & Yaodong Wang & Anthony Paul Roskilly, 2019. "Comparative Analysis of Small-Scale Organic Rankine Cycle Systems for Solar Energy Utilisation," Energies, MDPI, vol. 12(5), pages 1-22, March.
    20. Cho, Soo-Yong & Cho, Chong-Hyun & Ahn, Kook-Young & Lee, Young Duk, 2014. "A study of the optimal operating conditions in the organic Rankine cycle using a turbo-expander for fluctuations of the available thermal energy," Energy, Elsevier, vol. 64(C), pages 900-911.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:93:y:2015:i:p2:p:2199-2207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.