IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v292y2021ics0306261921001975.html
   My bibliography  Save this article

Waste heat recovery system for nuclear power plants using the gas hydrate heat cycle

Author

Listed:
  • Obara, Shin'ya
  • Tanaka, Ryu

Abstract

About 33% of the thermal energy produced in nuclear reactions is converted into electricity. The remaining 67 is released, for example, into the sea, etc., as waste heat. Therefore, waste heat recovery and its use in nuclear power plants (NPPs) are important for increasing the power generation efficiency. Therefore, in this paper, an absorption refrigerator using reactor cooling water (waste heat) and seawater as heat sources was used to generate cold heat, where a gas hydrate heat cycle (GHC) was introduced into the temperature difference between this cold heat and the waste heat of an NPP as an attempt to increase its power generation efficiency. The main specifications, including the gas hydrate power system (GPS) performance, were inferred from the results of previous experiments. In order to clarify the economics of the system, the discounted cash flow (DCF) method was proposed to reveal the payback period of the investment. Also, for case study analysis, a typical Japanese NPP (Kyushu Electric Power Co., Ltd., Genkai NPP Unit 4, pressurized water reactor with a rated power output of 1180 MWe and a thermal power output of 3423 MWth) was investigated. As a result, it was found that the proposed system can improve the power generation efficiency by 8.7%. The results also showed that the generation end efficiency of the GHC is more than 40% and that the payback period by the simple integration balance and net present value is 11 years. Also, it was found that the payback period in the case of the DCF method is 19.8 years.

Suggested Citation

  • Obara, Shin'ya & Tanaka, Ryu, 2021. "Waste heat recovery system for nuclear power plants using the gas hydrate heat cycle," Applied Energy, Elsevier, vol. 292(C).
  • Handle: RePEc:eee:appene:v:292:y:2021:i:c:s0306261921001975
    DOI: 10.1016/j.apenergy.2021.116667
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921001975
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.116667?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Jingye & Yu, Binbin & Ye, Zhenhong & Shi, Junye & Chen, Jiangping, 2019. "Experimental investigation of the impact of lubricant oil ratio on subcritical organic Rankine cycle for low-temperature waste heat recovery," Energy, Elsevier, vol. 188(C).
    2. Kawasaki, Toshiyuki & Obara, Shin'ya, 2020. "CO2 hydrate heat cycle using a carbon fiber supported catalyst for gas hydrate formation processes," Applied Energy, Elsevier, vol. 269(C).
    3. Zhang, Hong-Hu & Xi, Huan & He, Ya-Ling & Zhang, Yu-Wen & Ning, Bo, 2019. "Experimental study of the organic rankine cycle under different heat and cooling conditions," Energy, Elsevier, vol. 180(C), pages 678-688.
    4. Wang, Enhua & Yu, Zhibin, 2016. "A numerical analysis of a composition-adjustable Kalina cycle power plant for power generation from low-temperature geothermal sources," Applied Energy, Elsevier, vol. 180(C), pages 834-848.
    5. Imran, Muhammad & Pili, Roberto & Usman, Muhammad & Haglind, Fredrik, 2020. "Dynamic modeling and control strategies of organic Rankine cycle systems: Methods and challenges," Applied Energy, Elsevier, vol. 276(C).
    6. Hu, Shuozhuo & Li, Jian & Yang, Fubin & Yang, Zhen & Duan, Yuanyuan, 2020. "Multi-objective optimization of organic Rankine cycle using hydrofluorolefins (HFOs) based on different target preferences," Energy, Elsevier, vol. 203(C).
    7. Obara, Shin'ya & Mikawa, Daisuke, 2018. "Electric power control of a power generator using dissociation expansion of a gas hydrate," Applied Energy, Elsevier, vol. 222(C), pages 704-716.
    8. Wronski, Jorrit & Imran, Muhammad & Skovrup, Morten Juel & Haglind, Fredrik, 2019. "Experimental and numerical analysis of a reciprocating piston expander with variable valve timing for small-scale organic Rankine cycle power systems," Applied Energy, Elsevier, vol. 247(C), pages 403-416.
    9. Zhang, Kun & Chen, Xue & Markides, Christos N. & Yang, Yong & Shen, Shengqiang, 2016. "Evaluation of ejector performance for an organic Rankine cycle combined power and cooling system," Applied Energy, Elsevier, vol. 184(C), pages 404-412.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Junjie & Zhang, Yueling & Yang, Yanli & Zhang, Xiaomei & Wang, Nana & Zheng, Yonghong & Tian, Yajun & Xie, Kechang, 2022. "Life cycle assessment and techno-economic analysis of ethanol production via coal and its competitors: A comparative study," Applied Energy, Elsevier, vol. 312(C).
    2. Romo-De-La-Cruz, Cesar-Octavio & Chen, Yun & Liang, Liang & Paredes-Navia, Sergio A. & Wong-Ng, Winnie K. & Song, Xueyan, 2023. "Entering new era of thermoelectric oxide ceramics with high power factor through designing grain boundaries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    3. Srivastava, Mayank & Sarkar, Jahar & Sarkar, Arnab & Maheshwari, N.K. & Antony, A., 2024. "Thermo-economic feasibility study to utilize ORC technology for waste heat recovery from Indian nuclear power plants," Energy, Elsevier, vol. 298(C).
    4. Park, Joon Ho & Park, Jungjoon & Lee, Jae Won & Kang, Yong Tae, 2023. "Progress in CO2 hydrate formation and feasibility analysis for cold thermal energy harvesting application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    5. Aminnaji, Morteza & Qureshi, M Fahed & Dashti, Hossein & Hase, Alfred & Mosalanejad, Abdolali & Jahanbakhsh, Amir & Babaei, Masoud & Amiri, Amirpiran & Maroto-Valer, Mercedes, 2024. "CO2 Gas hydrate for carbon capture and storage applications – Part 1," Energy, Elsevier, vol. 300(C).
    6. Tongu, Daiki & Obara, Shin'ya, 2024. "Formation temperature range expansion and energy storage properties of CO2 hydrates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    7. Shi, Yu & Li, Dong & An, Yichao & Zhang, Liang & Li, Jun & Fu, Qian & Zhu, Xun & Liao, Qiang, 2023. "Power generation enhancement of a membrane-free thermally regenerative battery induced by the density difference of electrolytes," Applied Energy, Elsevier, vol. 344(C).
    8. Qin, Jiyou & Chinen, Daigo & Obara, Shin'ya, 2022. "Storage and discharge efficiency of small-temperature-difference CO2 hydrate batteries with cyclopentane accelerators," Applied Energy, Elsevier, vol. 308(C).
    9. Y., Nandakishora & Sahoo, Ranjit K. & S., Murugan & Gu, Sai, 2023. "4E analysis of the cryogenic CO2 separation process integrated with waste heat recovery," Energy, Elsevier, vol. 278(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Uemura, Yuta & Kawasaki, Toshiyuki & Obara, Shin’ya, 2021. "Analysis of the performance of an electricity generation system using the CO2 hydrate formation and dissociation process for heat recover," Energy, Elsevier, vol. 218(C).
    2. Yuhao Zhou & Jiongming Ruan & Guotong Hong & Zheng Miao, 2022. "Dynamic Modeling and Comparison Study of Control Strategies of a Small-Scale Organic Rankine Cycle," Energies, MDPI, vol. 15(15), pages 1-21, July.
    3. Qin, Jiyou & Chinen, Daigo & Obara, Shin'ya, 2022. "Storage and discharge efficiency of small-temperature-difference CO2 hydrate batteries with cyclopentane accelerators," Applied Energy, Elsevier, vol. 308(C).
    4. Kawai, Masahito & Obara, Shin'ya, 2021. "Study on a carbon dioxide hydrate power generation system employing an unstirred reactor with cyclopentane," Energy, Elsevier, vol. 230(C).
    5. Ma, Yixiang & Yu, Lean & Zhang, Guoxing & Lu, Zhiming & Wu, Jiaqian, 2023. "Source-load uncertainty-based multi-objective multi-energy complementary optimal scheduling," Renewable Energy, Elsevier, vol. 219(P1).
    6. Zhuang, Yu & Zhou, Congcong & Dong, Yachao & Du, Jian & Shen, Shengqiang, 2021. "A hierarchical optimization and design of double Kalina Cycles for waste heat recovery," Energy, Elsevier, vol. 219(C).
    7. Huster, Wolfgang R. & Schweidtmann, Artur M. & Mitsos, Alexander, 2020. "Globally optimal working fluid mixture composition for geothermal power cycles," Energy, Elsevier, vol. 212(C).
    8. Krail, Jürgen & Beckmann, Georg & Schittl, Florian & Piringer, Gerhard, 2023. "Comparative thermodynamic analysis of an improved ORC process with integrated injection of process fluid," Energy, Elsevier, vol. 266(C).
    9. Raheli Kaleibar, Mojtaba & Khoshbakhti Saray, Rahim & Pourgol, Mohammad, 2024. "Comprehensive assumption-free dynamic simulation of an organic Rankine cycle using moving-boundary method," Energy, Elsevier, vol. 307(C).
    10. Mahmoudi, S.M.S. & Akbari Kordlar, M., 2018. "A new flexible geothermal based cogeneration system producing power and refrigeration," Renewable Energy, Elsevier, vol. 123(C), pages 499-512.
    11. Yeqiang Zhang & Biao Lei & Zubair Masaud & Muhammad Imran & Yuting Wu & Jinping Liu & Xiaoding Qin & Hafiz Ali Muhammad, 2020. "Waste Heat Recovery from Diesel Engine Exhaust Using a Single-Screw Expander Organic Rankine Cycle System: Experimental Investigation of Exergy Destruction," Energies, MDPI, vol. 13(22), pages 1-15, November.
    12. Bi, Rongshan & Chen, Chen & Li, Jiansong & Tan, Xinshun & Xiang, Shuguang, 2018. "Research on the CFD numerical simulation of flash boiling atomization," Energy, Elsevier, vol. 165(PA), pages 768-781.
    13. Cruz-Peragón, F. & Gómez-de la Cruz, F.J. & Palomar-Carnicero, J.M. & López-García, R., 2022. "Optimal design of a hybrid ground source heat pump for an official building with thermal load imbalance and limited space for the ground heat exchanger," Renewable Energy, Elsevier, vol. 195(C), pages 381-394.
    14. Fan, Chengcheng & Zhang, Chengbin & Chen, Yongping, 2024. "Dynamic operation characteristics of ocean thermal energy conversion using Kalina cycle," Renewable Energy, Elsevier, vol. 231(C).
    15. Feng, Yong-qiang & Wang, Yu & Yao, Lin & Xu, Jing-wei & Zhang, Fei-yang & He, Zhi-xia & Wang, Qian & Ma, Jian-long, 2023. "Parametric analysis and thermal-economical optimization of a parallel dual pressure evaporation and two stage regenerative organic Rankine cycle using mixture working fluids," Energy, Elsevier, vol. 263(PA).
    16. Jiang, L. & Roskilly, A.P. & Wang, R.Z. & Wang, L.W., 2018. "Analysis on innovative resorption cycle for power and refrigeration cogeneration," Applied Energy, Elsevier, vol. 218(C), pages 10-21.
    17. Thakre, Niraj & Jana, Amiya K., 2021. "Physical and molecular insights to Clathrate hydrate thermodynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    18. Niu, Jintao & Wang, Jiansheng & Liu, Xueling, 2023. "Thermodynamic and economic analysis of organic Rankine cycle combined with flash cycle and ejector," Energy, Elsevier, vol. 282(C).
    19. Li, Zhi & Wang, Lei & Jiang, Ruicheng & Wang, Bingzheng & Yu, Xiaonan & Huang, Rui & Yu, Xiaoli, 2022. "Experimental investigations on dynamic performance of organic Rankine cycle integrated with latent thermal energy storage under transient engine conditions," Energy, Elsevier, vol. 246(C).
    20. Zhou, Xiao & Cai, Yangchao & Li, Xuetao, 2024. "Process arrangement and multi-aspect study of a novel environmentally-friendly multigeneration plant relying on a geothermal-based plant combined with the goswami cycle booted by kalina and desalinati," Energy, Elsevier, vol. 299(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:292:y:2021:i:c:s0306261921001975. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.