IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i7p495-d72987.html
   My bibliography  Save this article

Performance Analysis of a Reciprocating Piston Expander and a Plate Type Exhaust Gas Recirculation Boiler in a Water-Based Rankine Cycle for Heat Recovery from a Heavy Duty Diesel Engine

Author

Listed:
  • Gunnar Latz

    (Division of Combustion, Department of Applied Mechanics, Chalmers University of Technology, Gothenburg 41296, Sweden)

  • Olof Erlandsson

    (TitanX Engine Cooling AB, Sölvesborg 29471, Sweden)

  • Thomas Skåre

    (TitanX Engine Cooling AB, Sölvesborg 29471, Sweden)

  • Arnaud Contet

    (TitanX Engine Cooling AB, Sölvesborg 29471, Sweden)

  • Sven Andersson

    (Division of Combustion, Department of Applied Mechanics, Chalmers University of Technology, Gothenburg 41296, Sweden)

  • Karin Munch

    (Division of Combustion, Department of Applied Mechanics, Chalmers University of Technology, Gothenburg 41296, Sweden)

Abstract

The exhaust gas in an internal combustion engine provides favorable conditions for a waste-heat recovery (WHR) system. The highest potential is achieved by the Rankine cycle as a heat recovery technology. There are only few experimental studies that investigate full-scale systems using water-based working fluids and their effects on the performance and operation of a Rankine cycle heat recovery system. This paper discusses experimental results and practical challenges with a WHR system when utilizing heat from the exhaust gas recirculation system of a truck engine. The results showed that the boiler’s pinch point necessitated trade-offs between maintaining adequate boiling pressure while achieving acceptable cooling of the EGR and superheating of the water. The expander used in the system had a geometric compression ratio of 21 together with a steam outlet timing that caused high re-compression. Inlet pressures of up to 30 bar were therefore required for a stable expander power output. Such high pressures increased the pump power, and reduced the EGR cooling in the boiler because of pinch-point effects. Simulations indicated that reducing the expander’s compression ratio from 21 to 13 would allow 30% lower steam supply pressures without adversely affecting the expander’s power output.

Suggested Citation

  • Gunnar Latz & Olof Erlandsson & Thomas Skåre & Arnaud Contet & Sven Andersson & Karin Munch, 2016. "Performance Analysis of a Reciprocating Piston Expander and a Plate Type Exhaust Gas Recirculation Boiler in a Water-Based Rankine Cycle for Heat Recovery from a Heavy Duty Diesel Engine," Energies, MDPI, vol. 9(7), pages 1-18, June.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:7:p:495-:d:72987
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/7/495/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/7/495/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Badami, M. & Mura, M., 2009. "Preliminary design and controlling strategies of a small-scale wood waste Rankine Cycle (RC) with a reciprocating steam engine (SE)," Energy, Elsevier, vol. 34(9), pages 1315-1324.
    2. Wang, Tianyou & Zhang, Yajun & Peng, Zhijun & Shu, Gequn, 2011. "A review of researches on thermal exhaust heat recovery with Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2862-2871, August.
    3. Yulia Glavatskaya & Pierre Podevin & Vincent Lemort & Osoko Shonda & Georges Descombes, 2012. "Reciprocating Expander for an Exhaust Heat Recovery Rankine Cycle for a Passenger Car Application," Energies, MDPI, vol. 5(6), pages 1-15, June.
    4. Panesar, Angad S. & Morgan, Robert E. & Miché, Nicolas D.D. & Heikal, Morgan R., 2013. "Working fluid selection for a subcritical bottoming cycle applied to a high exhaust gas recirculation engine," Energy, Elsevier, vol. 60(C), pages 388-400.
    5. Young Min Kim & Dong Gil Shin & Chang Gi Kim, 2014. "Optimization of Design Pressure Ratio of Positive Displacement Expander for Vehicle Engine Waste Heat Recovery," Energies, MDPI, vol. 7(9), pages 1-13, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Piotr Kolasiński, 2020. "Domestic Organic Rankine Cycle-Based Cogeneration Systems as a Way to Reduce Dust Emissions in Municipal Heating," Energies, MDPI, vol. 13(15), pages 1-22, August.
    2. Piotr Kolasiński, 2020. "The Method of the Working Fluid Selection for Organic Rankine Cycle (ORC) Systems Employing Volumetric Expanders," Energies, MDPI, vol. 13(3), pages 1-28, January.
    3. Mamdouh Alshammari & Fuhaid Alshammari & Apostolos Pesyridis, 2019. "Electric Boosting and Energy Recovery Systems for Engine Downsizing," Energies, MDPI, vol. 12(24), pages 1-33, December.
    4. Yin, Zibin & Cai, Wenwei & Zhang, Zhuo & Deng, Zijin & Li, Zhiyong, 2022. "Effects of hydrogen-rich products from methanol steam reforming on the performance enhancement of a medium-speed marine engine," Energy, Elsevier, vol. 256(C).
    5. Wronski, Jorrit & Imran, Muhammad & Skovrup, Morten Juel & Haglind, Fredrik, 2019. "Experimental and numerical analysis of a reciprocating piston expander with variable valve timing for small-scale organic Rankine cycle power systems," Applied Energy, Elsevier, vol. 247(C), pages 403-416.
    6. Sangram Kishore Nanda & Boru Jia & Andrew Smallbone & Anthony Paul Roskilly, 2017. "Development of a Diesel Engine Thermal Overload Monitoring System with Applications and Test Results," Energies, MDPI, vol. 10(7), pages 1-13, June.
    7. Zhongbo Zhang & Lifu Li, 2018. "Investigation of In-Cylinder Steam Injection in a Turbocharged Diesel Engine for Waste Heat Recovery and NO x Emission Control," Energies, MDPI, vol. 11(4), pages 1-22, April.
    8. Wenzhi Gao & Wangbo He & Lifeng Wei & Guanghua Li & Ziqi Liu, 2016. "Experimental and Potential Analysis of a Single-Valve Expander for Waste Heat Recovery of a Gasoline Engine," Energies, MDPI, vol. 9(12), pages 1-15, November.
    9. Lai, Yee Qing & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul, 2020. "Graphical customisation of process and utility changes for heat exchanger network retrofit using individual stream temperature versus enthalpy plot," Energy, Elsevier, vol. 203(C).
    10. Rijpkema, Jelmer & Erlandsson, Olof & Andersson, Sven B. & Munch, Karin, 2022. "Exhaust waste heat recovery from a heavy-duty truck engine: Experiments and simulations," Energy, Elsevier, vol. 238(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenzhi Gao & Wangbo He & Lifeng Wei & Guanghua Li & Ziqi Liu, 2016. "Experimental and Potential Analysis of a Single-Valve Expander for Waste Heat Recovery of a Gasoline Engine," Energies, MDPI, vol. 9(12), pages 1-15, November.
    2. Bouvier, Jean-Louis & Lemort, Vincent & Michaux, Ghislain & Salagnac, Patrick & Kientz, Thiebaut, 2016. "Experimental study of an oil-free steam piston expander for micro-combined heat and power systems," Applied Energy, Elsevier, vol. 169(C), pages 788-798.
    3. Fuhaid Alshammari & Apostolos Karvountzis-Kontakiotis & Apostolos Pesyridis & Muhammad Usman, 2018. "Expander Technologies for Automotive Engine Organic Rankine Cycle Applications," Energies, MDPI, vol. 11(7), pages 1-36, July.
    4. Marcin Wołowicz & Piotr Kolasiński & Krzysztof Badyda, 2021. "Modern Small and Microcogeneration Systems—A Review," Energies, MDPI, vol. 14(3), pages 1-47, February.
    5. Wronski, Jorrit & Imran, Muhammad & Skovrup, Morten Juel & Haglind, Fredrik, 2019. "Experimental and numerical analysis of a reciprocating piston expander with variable valve timing for small-scale organic Rankine cycle power systems," Applied Energy, Elsevier, vol. 247(C), pages 403-416.
    6. Panesar, Angad Singh, 2016. "An innovative organic Rankine cycle approach for high temperature applications," Energy, Elsevier, vol. 115(P2), pages 1436-1450.
    7. Kim, Young Min & Shin, Dong Gil & Kim, Chang Gi & Cho, Gyu Baek, 2016. "Single-loop organic Rankine cycles for engine waste heat recovery using both low- and high-temperature heat sources," Energy, Elsevier, vol. 96(C), pages 482-494.
    8. Piotr Kolasiński, 2020. "The Method of the Working Fluid Selection for Organic Rankine Cycle (ORC) Systems Employing Volumetric Expanders," Energies, MDPI, vol. 13(3), pages 1-28, January.
    9. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
    10. Gaosheng Li & Hongguang Zhang & Fubin Yang & Songsong Song & Ying Chang & Fei Yu & Jingfu Wang & Baofeng Yao, 2016. "Preliminary Development of a Free Piston Expander–Linear Generator for Small-Scale Organic Rankine Cycle (ORC) Waste Heat Recovery System," Energies, MDPI, vol. 9(4), pages 1-18, April.
    11. Liang, Ting & Vecchi, Andrea & Knobloch, Kai & Sciacovelli, Adriano & Engelbrecht, Kurt & Li, Yongliang & Ding, Yulong, 2022. "Key components for Carnot Battery: Technology review, technical barriers and selection criteria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    12. Piotr Kolasiński, 2020. "Domestic Organic Rankine Cycle-Based Cogeneration Systems as a Way to Reduce Dust Emissions in Municipal Heating," Energies, MDPI, vol. 13(15), pages 1-22, August.
    13. Zhai, Huixing & An, Qingsong & Shi, Lin & Lemort, Vincent & Quoilin, Sylvain, 2016. "Categorization and analysis of heat sources for organic Rankine cycle systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 790-805.
    14. Lion, Simone & Michos, Constantine N. & Vlaskos, Ioannis & Rouaud, Cedric & Taccani, Rodolfo, 2017. "A review of waste heat recovery and Organic Rankine Cycles (ORC) in on-off highway vehicle Heavy Duty Diesel Engine applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 691-708.
    15. He, Wei & Wang, Jihong, 2018. "Optimal selection of air expansion machine in Compressed Air Energy Storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 77-95.
    16. Dumont, Olivier & Parthoens, Antoine & Dickes, Rémi & Lemort, Vincent, 2018. "Experimental investigation and optimal performance assessment of four volumetric expanders (scroll, screw, piston and roots) tested in a small-scale organic Rankine cycle system," Energy, Elsevier, vol. 165(PA), pages 1119-1127.
    17. Yang, Zhimin & Zhang, Yanchao & Dong, Qingchun & Lin, Jian & Lin, Guoxing & Chen, Jincan, 2018. "Maximum power output and parametric choice criteria of a thermophotovoltaic cell driven by automobile exhaust," Renewable Energy, Elsevier, vol. 121(C), pages 28-35.
    18. He, Chao & Liu, Chao & Zhou, Mengtong & Xie, Hui & Xu, Xiaoxiao & Wu, Shuangying & Li, Yourong, 2014. "A new selection principle of working fluids for subcritical organic Rankine cycle coupling with different heat sources," Energy, Elsevier, vol. 68(C), pages 283-291.
    19. Francesconi, Marco & Antonelli, Marco, 2017. "A numerical model for the prediction of the fluid dynamic and mechanical losses of a Wankel-type expansion device," Applied Energy, Elsevier, vol. 205(C), pages 225-235.
    20. Zegenhagen, M.T. & Ziegler, F., 2015. "Feasibility analysis of an exhaust gas waste heat driven jet-ejector cooling system for charge air cooling of turbocharged gasoline engines," Applied Energy, Elsevier, vol. 160(C), pages 221-230.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:7:p:495-:d:72987. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.