IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v142y2018icp655-665.html
   My bibliography  Save this article

Simulation, construction and evaluation of cheap piston expander for low-pressure power generation by compressed air as working fluid

Author

Listed:
  • Tenissara, Nopporn
  • Thepa, Sirichai
  • Monyakul, Veerapol

Abstract

This research presents piston expander for low-pressure (1–10 bars) power generation to use with organic Rankine cycle and compressed air storage system. The mathematical model is analyzed to show behavior of main parameters such as pressure ratio and charge/discharge volumes where these parameters influence to the work and an isentropic efficiency base on dimensionless analysis. The main contributions of this work are method to find the main parameters at the best performance, modification of diesel engine to use as expander and performance evaluation. From the simulation, we found that the high discharge volumes lead to high producing work and isentropic efficiency. The expander was tested to find the power output and isentropic efficiency of the proposed method including torque, speed, temperature and flow rate compared with the simulation results. From the experimental results, the modified expander by the proposed method can be operated by using low pressure working fluid. The engine produces maximum power output are 160 W, 257 W and 431 W at averaged speed of 683 rpm where pressure ratios are 3, 4 and 5. The averaged isentropic efficiency is 57%.

Suggested Citation

  • Tenissara, Nopporn & Thepa, Sirichai & Monyakul, Veerapol, 2018. "Simulation, construction and evaluation of cheap piston expander for low-pressure power generation by compressed air as working fluid," Energy, Elsevier, vol. 142(C), pages 655-665.
  • Handle: RePEc:eee:energy:v:142:y:2018:i:c:p:655-665
    DOI: 10.1016/j.energy.2017.10.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217317024
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.10.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Badami, M. & Mura, M., 2009. "Preliminary design and controlling strategies of a small-scale wood waste Rankine Cycle (RC) with a reciprocating steam engine (SE)," Energy, Elsevier, vol. 34(9), pages 1315-1324.
    2. Bouvier, Jean-Louis & Lemort, Vincent & Michaux, Ghislain & Salagnac, Patrick & Kientz, Thiebaut, 2016. "Experimental study of an oil-free steam piston expander for micro-combined heat and power systems," Applied Energy, Elsevier, vol. 169(C), pages 788-798.
    3. Preetham, B.S. & Weiss, L., 2016. "Investigations of a new free piston expander engine cycle," Energy, Elsevier, vol. 106(C), pages 535-545.
    4. Declaye, Sébastien & Quoilin, Sylvain & Guillaume, Ludovic & Lemort, Vincent, 2013. "Experimental study on an open-drive scroll expander integrated into an ORC (Organic Rankine Cycle) system with R245fa as working fluid," Energy, Elsevier, vol. 55(C), pages 173-183.
    5. Park, Jungsoo & Song, Soonho & Lee, Kyo Seung, 2015. "Numerical investigation of a dual-loop EGR split strategy using a split index and multi-objective Pareto optimization," Applied Energy, Elsevier, vol. 142(C), pages 21-32.
    6. Imran, Muhammad & Usman, Muhammad & Park, Byung-Sik & Lee, Dong-Hyun, 2016. "Volumetric expanders for low grade heat and waste heat recovery applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1090-1109.
    7. Qiu, Guoquan, 2012. "Selection of working fluids for micro-CHP systems with ORC," Renewable Energy, Elsevier, vol. 48(C), pages 565-570.
    8. Khoroshiltseva, Marina & Slanzi, Debora & Poli, Irene, 2016. "A Pareto-based multi-objective optimization algorithm to design energy-efficient shading devices," Applied Energy, Elsevier, vol. 184(C), pages 1400-1410.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesconi, M. & Caposciutti, G. & Antonelli, M., 2018. "An experimental and numerical analysis of the performances of a Wankel steam expander," Energy, Elsevier, vol. 164(C), pages 615-626.
    2. Dellicompagni, Pablo & Saravia, Luis & Altamirano, Martín & Franco, Judith, 2018. "Simulation and testing of a solar reciprocating steam engine," Energy, Elsevier, vol. 151(C), pages 662-674.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dellicompagni, Pablo & Saravia, Luis & Altamirano, Martín & Franco, Judith, 2018. "Simulation and testing of a solar reciprocating steam engine," Energy, Elsevier, vol. 151(C), pages 662-674.
    2. Tian, Yafen & Xing, Ziwen & He, Zhilong & Wu, Huagen, 2017. "Modeling and performance analysis of twin-screw steam expander under fluctuating operating conditions in steam pipeline pressure energy recovery applications," Energy, Elsevier, vol. 141(C), pages 692-701.
    3. Wronski, Jorrit & Imran, Muhammad & Skovrup, Morten Juel & Haglind, Fredrik, 2019. "Experimental and numerical analysis of a reciprocating piston expander with variable valve timing for small-scale organic Rankine cycle power systems," Applied Energy, Elsevier, vol. 247(C), pages 403-416.
    4. Xu, Yonghong & Tong, Liang & Zhang, Hongguang & Hou, Xiaochen & Yang, Fubin & Yu, Fei & Yang, Yuxin & Liu, Rong & Tian, Yaming & Zhao, Tenglong, 2018. "Experimental and simulation study of a free piston expander–linear generator for small-scale organic Rankine cycle," Energy, Elsevier, vol. 161(C), pages 776-791.
    5. Gaosheng Li & Hongguang Zhang & Fubin Yang & Songsong Song & Ying Chang & Fei Yu & Jingfu Wang & Baofeng Yao, 2016. "Preliminary Development of a Free Piston Expander–Linear Generator for Small-Scale Organic Rankine Cycle (ORC) Waste Heat Recovery System," Energies, MDPI, vol. 9(4), pages 1-18, April.
    6. Francesconi, Marco & Dori, Edoardo & Antonelli, Marco, 2019. "Analysis of Balje diagrams for a Wankel expander prototype," Applied Energy, Elsevier, vol. 238(C), pages 775-785.
    7. Fuhaid Alshammari & Apostolos Karvountzis-Kontakiotis & Apostolos Pesyridis & Muhammad Usman, 2018. "Expander Technologies for Automotive Engine Organic Rankine Cycle Applications," Energies, MDPI, vol. 11(7), pages 1-36, July.
    8. Francesconi, Marco & Antonelli, Marco, 2017. "A numerical model for the prediction of the fluid dynamic and mechanical losses of a Wankel-type expansion device," Applied Energy, Elsevier, vol. 205(C), pages 225-235.
    9. Moradi, Ramin & Habib, Emanuele & Bocci, Enrico & Cioccolanti, Luca, 2020. "Investigation on the use of a novel regenerative flow turbine in a micro-scale Organic Rankine Cycle unit," Energy, Elsevier, vol. 210(C).
    10. Yang, Min-Hsiung & Yeh, Rong-Hua, 2016. "Economic performances optimization of an organic Rankine cycle system with lower global warming potential working fluids in geothermal application," Renewable Energy, Elsevier, vol. 85(C), pages 1201-1213.
    11. Braimakis, Konstantinos & Karellas, Sotirios, 2017. "Integrated thermoeconomic optimization of standard and regenerative ORC for different heat source types and capacities," Energy, Elsevier, vol. 121(C), pages 570-598.
    12. Wenzhi Gao & Wangbo He & Lifeng Wei & Guanghua Li & Ziqi Liu, 2016. "Experimental and Potential Analysis of a Single-Valve Expander for Waste Heat Recovery of a Gasoline Engine," Energies, MDPI, vol. 9(12), pages 1-15, November.
    13. Baoying Peng & Kai Zhang & Liang Tong & Yonghong Xu, 2023. "Research on Gas Recycling of Free-Piston Expander–Linear Generator for Organic Rankine Cycle of Vehicle," Sustainability, MDPI, vol. 15(18), pages 1-16, September.
    14. Weiß, Andreas P. & Novotný, Václav & Popp, Tobias & Streit, Philipp & Špale, Jan & Zinn, Gerd & Kolovratník, Michal, 2020. "Customized ORC micro turbo-expanders - From 1D design to modular construction kit and prospects of additive manufacturing," Energy, Elsevier, vol. 209(C).
    15. Ziviani, Davide & Groll, Eckhard A. & Braun, James E. & De Paepe, Michel & van den Broek, Martijn, 2018. "Analysis of an organic Rankine cycle with liquid-flooded expansion and internal regeneration (ORCLFE)," Energy, Elsevier, vol. 144(C), pages 1092-1106.
    16. Ziviani, D. & Gusev, S. & Lecompte, S. & Groll, E.A. & Braun, J.E. & Horton, W.T. & van den Broek, M. & De Paepe, M., 2017. "Optimizing the performance of small-scale organic Rankine cycle that utilizes a single-screw expander," Applied Energy, Elsevier, vol. 189(C), pages 416-432.
    17. Giuffrida, Antonio, 2017. "Improving the semi-empirical modelling of a single-screw expander for small organic Rankine cycles," Applied Energy, Elsevier, vol. 193(C), pages 356-368.
    18. Wang, Yaodong & Chen, Lin & Jia, Boru & Roskilly, Anthony Paul, 2017. "Experimental study of the operation characteristics of an air-driven free-piston linear expander," Applied Energy, Elsevier, vol. 195(C), pages 93-99.
    19. Antonelli, M. & Baccioli, A. & Francesconi, M. & Desideri, U. & Martorano, L., 2015. "Electrical production of a small size Concentrated Solar Power plant with compound parabolic collectors," Renewable Energy, Elsevier, vol. 83(C), pages 1110-1118.
    20. Hou, Xiaochen & Zhang, Hongguang & Yu, Fei & Liu, Hongda & Yang, Fubin & Xu, Yonghong & Tian, Yaming & Li, Gaosheng, 2017. "Free piston expander-linear generator used for organic Rankine cycle waste heat recovery system," Applied Energy, Elsevier, vol. 208(C), pages 1297-1307.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:142:y:2018:i:c:p:655-665. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.