IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v229y2018icp42-62.html
   My bibliography  Save this article

Experimental study of homogeneous charge compression ignition engine operation fuelled by emulated solid oxide fuel cell anode off-gas

Author

Listed:
  • Choi, Wonjae
  • Kim, Jaehyun
  • Kim, Yongtae
  • Kim, Seonyeob
  • Oh, Sechul
  • Song, Han Ho

Abstract

A solid oxide fuel cell (SOFC) hybrid system is a system that combines an SOFC with an additional power generation device to increase the efficiency of the system. The SOFC–gas turbine hybrid system has been primarily investigated for SOFC hybrid systems. However, the current power generation capacity of an SOFC is less than several MWs; for this generation capacity, an internal combustion engine is generally more efficient and economical than a gas turbine. Focusing on this point, recently, the concept of an SOFC–internal combustion engine hybrid system was proposed. However, the operation of this system has not been experimentally studied yet. In this paper, as the first step in an experimental investigation of the hybrid system, an experimental study on the operation of an internal combustion engine fuelled by SOFC anode off-gas was conducted. To successfully combust the SOFC anode off-gas, which includes a large amount of diluents (H2O and CO2), the homogeneous charge compression ignition (HCCI) method was selected instead of spark ignition as the combustion strategy of the internal combustion engine in the hybrid system. For the HCCI engine experiments, a single-cylinder HCCI engine and experimental equipment for emulating SOFC anode off-gas were constructed. Various HCCI engine experiments were performed while varying several system control parameters, e.g., the fuel utilization factor of an SOFC, which primarily affects the composition and flow rate of the engine intake gas. The experiments indicated that, in general system operating condition, HCCI engine operation yields a significant amount of power (w/25–30% gross indicated efficiency) and produces significantly low NOx emissions (<5 ppm @ O2 15%) under stable HCCI combustion (<5% COV IMEPg, which is the coefficient of variance of the gross indicated mean effective pressure). Considering that the experiment was performed using a small single-cylinder engine, these experimental results reveal that the use of an HCCI engine as the bottoming cycle in an SOFC hybrid system is promising. In addition, it has been found how each system control parameter affects HCCI engine operation. It was confirmed that HCCI engine operation was not always stable in all system operating conditions. System operating conditions that induce an exceedingly low engine load (<1.8 bar IMEPg, which is the gross indicated mean effective pressure) should be avoided as it decreases the stability of engine operation. Additionally, system operating conditions that make an engine intake gas with excessive dilution (fuel molar fraction < 0.125) should be avoided to decrease the amount of unburned CO emission and maintain a CO combustion efficiency higher than 90%.

Suggested Citation

  • Choi, Wonjae & Kim, Jaehyun & Kim, Yongtae & Kim, Seonyeob & Oh, Sechul & Song, Han Ho, 2018. "Experimental study of homogeneous charge compression ignition engine operation fuelled by emulated solid oxide fuel cell anode off-gas," Applied Energy, Elsevier, vol. 229(C), pages 42-62.
  • Handle: RePEc:eee:appene:v:229:y:2018:i:c:p:42-62
    DOI: 10.1016/j.apenergy.2018.07.086
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918311097
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.07.086?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Calise, F. & Dentice d’Accadia, M. & Palombo, A. & Vanoli, L., 2006. "Simulation and exergy analysis of a hybrid Solid Oxide Fuel Cell (SOFC)–Gas Turbine System," Energy, Elsevier, vol. 31(15), pages 3278-3299.
    2. Harun, Nor Farida & Tucker, David & Adams II, Thomas A., 2017. "Technical challenges in operating an SOFC in fuel flexible gas turbine hybrid systems: Coupling effects of cathode air mass flow," Applied Energy, Elsevier, vol. 190(C), pages 852-867.
    3. Kang, Sanggyu & Ahn, Kook-Young, 2017. "Dynamic modeling of solid oxide fuel cell and engine hybrid system for distributed power generation," Applied Energy, Elsevier, vol. 195(C), pages 1086-1099.
    4. Bedoya, Iván D. & Saxena, Samveg & Cadavid, Francisco J. & Dibble, Robert W. & Wissink, Martin, 2012. "Experimental evaluation of strategies to increase the operating range of a biogas-fueled HCCI engine for power generation," Applied Energy, Elsevier, vol. 97(C), pages 618-629.
    5. Ferrari, Mario L. & Pascenti, Matteo & Traverso, Alberto N. & Massardo, Aristide F., 2012. "Hybrid system test rig: Chemical composition emulation with steam injection," Applied Energy, Elsevier, vol. 97(C), pages 809-815.
    6. Bhaduri, S. & Contino, F. & Jeanmart, H. & Breuer, E., 2015. "The effects of biomass syngas composition, moisture, tar loading and operating conditions on the combustion of a tar-tolerant HCCI (Homogeneous Charge Compression Ignition) engine," Energy, Elsevier, vol. 87(C), pages 289-302.
    7. Ferrari, Mario L., 2015. "Advanced control approach for hybrid systems based on solid oxide fuel cells," Applied Energy, Elsevier, vol. 145(C), pages 364-373.
    8. Buonomano, Annamaria & Calise, Francesco & d’Accadia, Massimo Dentice & Palombo, Adolfo & Vicidomini, Maria, 2015. "Hybrid solid oxide fuel cells–gas turbine systems for combined heat and power: A review," Applied Energy, Elsevier, vol. 156(C), pages 32-85.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sapra, Harsh & Stam, Jelle & Reurings, Jeroen & van Biert, Lindert & van Sluijs, Wim & de Vos, Peter & Visser, Klaas & Vellayani, Aravind Purushothaman & Hopman, Hans, 2021. "Integration of solid oxide fuel cell and internal combustion engine for maritime applications," Applied Energy, Elsevier, vol. 281(C).
    2. Chehrmonavari, Hamed & Kakaee, Amirhasan & Hosseini, Seyed Ehsan & Desideri, Umberto & Tsatsaronis, George & Floerchinger, Gus & Braun, Robert & Paykani, Amin, 2023. "Hybridizing solid oxide fuel cells with internal combustion engines for power and propulsion systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    3. Zhixing Ji & Fafu Guo & Tingting Zhu & Kunlin Cheng & Silong Zhang & Jiang Qin & Peng Dong, 2023. "Thermodynamic Performance Comparisons of Ideal Brayton Cycles Integrated with High Temperature Fuel Cells as Power Sources on Aircraft," Sustainability, MDPI, vol. 15(3), pages 1-16, February.
    4. Li, Chengjie & Wang, Zixuan & Liu, He & Guo, Fafu & Li, Chenghao & Xiu, Xinyan & Wang, Cong & Qin, Jiang & Wei, Liqiu, 2024. "Integrated analysis and performance optimization of fuel cell engine cogeneration system with methanol for marine application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    5. Ouyang, Tiancheng & Zhao, Zhongkai & Wang, Zhiping & Zhang, Mingliang & Liu, Benlong, 2021. "A high-efficiency scheme for waste heat harvesting of solid oxide fuel cell integrated homogeneous charge compression ignition engine," Energy, Elsevier, vol. 229(C).
    6. Cho, Mingyu & Kim, Yongtae & Ho Song, Han, 2022. "Solid oxide fuel cell–internal combustion engine hybrid system utilizing an internal combustion engine for anode off-gas recirculation, external reforming, and additional power generation," Applied Energy, Elsevier, vol. 328(C).
    7. Choi, Wonjae & Song, Han Ho, 2020. "Composition-considered Woschni heat transfer correlation: Findings from the analysis of over-expected engine heat losses in a solid oxide fuel cell–internal combustion engine hybrid system," Energy, Elsevier, vol. 203(C).
    8. Kim, Young Sang & Lee, Young Duk & Ahn, Kook Young, 2020. "System integration and proof-of-concept test results of SOFC–engine hybrid power generation system," Applied Energy, Elsevier, vol. 277(C).
    9. Choi, Wonjae & Kim, Jaehyun & Kim, Yongtae & Song, Han Ho, 2019. "Solid oxide fuel cell operation in a solid oxide fuel cell–internal combustion engine hybrid system and the design point performance of the hybrid system," Applied Energy, Elsevier, vol. 254(C).
    10. Koo, Taehyung & Kim, Young Sang & Lee, Young Duk & Yu, Sangseok & Lee, Dong Keun & Ahn, Kook Young, 2021. "Exergetic evaluation of operation results of 5-kW-class SOFC-HCCI engine hybrid power generation system," Applied Energy, Elsevier, vol. 295(C).
    11. Wu, Zhen & Zhu, Pengfei & Yao, Jing & Zhang, Shengan & Ren, Jianwei & Yang, Fusheng & Zhang, Zaoxiao, 2020. "Combined biomass gasification, SOFC, IC engine, and waste heat recovery system for power and heat generation: Energy, exergy, exergoeconomic, environmental (4E) evaluations," Applied Energy, Elsevier, vol. 279(C).
    12. D.F. Chuahy, Flavio & Kokjohn, Sage L., 2019. "Solid oxide fuel cell and advanced combustion engine combined cycle: A pathway to 70% electrical efficiency," Applied Energy, Elsevier, vol. 235(C), pages 391-408.
    13. Kim, Jaehyun & Kim, Yongtae & Choi, Wonjae & Ahn, Kook Young & Song, Han Ho, 2020. "Analysis on the operating performance of 5-kW class solid oxide fuel cell-internal combustion engine hybrid system using spark-assisted ignition," Applied Energy, Elsevier, vol. 260(C).
    14. Ouyang, Tiancheng & Zhao, Zhongkai & Zhang, Mingliang & Xie, Shutao & Wang, Zhiping, 2022. "A micro off-grid power solution for solid oxide fuel cell waste heat reusing enabled peak load shifting by integrating compressed-air energy storage," Applied Energy, Elsevier, vol. 323(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Choi, Wonjae & Kim, Jaehyun & Kim, Yongtae & Song, Han Ho, 2019. "Solid oxide fuel cell operation in a solid oxide fuel cell–internal combustion engine hybrid system and the design point performance of the hybrid system," Applied Energy, Elsevier, vol. 254(C).
    2. Azizi, Mohammad Ali & Brouwer, Jacob, 2018. "Progress in solid oxide fuel cell-gas turbine hybrid power systems: System design and analysis, transient operation, controls and optimization," Applied Energy, Elsevier, vol. 215(C), pages 237-289.
    3. Dehghan, Ali Reza & Fanaei, Mohammad Ali & Panahi, Mehdi, 2022. "Economic plantwide control of a hybrid solid oxide fuel cell - gas turbine system," Applied Energy, Elsevier, vol. 328(C).
    4. Zaccaria, V. & Tucker, D. & Traverso, A., 2016. "Transfer function development for SOFC/GT hybrid systems control using cold air bypass," Applied Energy, Elsevier, vol. 165(C), pages 695-706.
    5. Steilen, Mike & Saletti, Costanza & Heddrich, Marc P. & Friedrich, K. Andreas, 2018. "Analysis of the influence of heat transfer on the stationary operation and performance of a solid oxide fuel cell/gas turbine hybrid power plant," Applied Energy, Elsevier, vol. 211(C), pages 479-491.
    6. D.F. Chuahy, Flavio & Kokjohn, Sage L., 2019. "Solid oxide fuel cell and advanced combustion engine combined cycle: A pathway to 70% electrical efficiency," Applied Energy, Elsevier, vol. 235(C), pages 391-408.
    7. Kim, Jaehyun & Kim, Yongtae & Choi, Wonjae & Ahn, Kook Young & Song, Han Ho, 2020. "Analysis on the operating performance of 5-kW class solid oxide fuel cell-internal combustion engine hybrid system using spark-assisted ignition," Applied Energy, Elsevier, vol. 260(C).
    8. Xu, Haoran & Chen, Bin & Tan, Peng & Zhang, Houcheng & Yuan, Jinliang & Liu, Jiang & Ni, Meng, 2017. "Performance improvement of a direct carbon solid oxide fuel cell system by combining with a Stirling cycle," Energy, Elsevier, vol. 140(P1), pages 979-987.
    9. Zeng, Hongyu & Wang, Yuqing & Shi, Yixiang & Cai, Ningsheng & Yuan, Dazhong, 2018. "Highly thermal integrated heat pipe-solid oxide fuel cell," Applied Energy, Elsevier, vol. 216(C), pages 613-619.
    10. Rashid, Kashif & Dong, Sang Keun & Mehran, Muhammad Taqi & Lee, Dong Won, 2017. "Design and analysis of compact hotbox for solid oxide fuel cell based 1kW-class power generation system," Applied Energy, Elsevier, vol. 208(C), pages 620-636.
    11. Joshua A. Wilson & Yudong Wang & John Carroll & Jonathan Raush & Gene Arkenberg & Emir Dogdibegovic & Scott Swartz & David Daggett & Subhash Singhal & Xiao-Dong Zhou, 2022. "Hybrid Solid Oxide Fuel Cell/Gas Turbine Model Development for Electric Aviation," Energies, MDPI, vol. 15(8), pages 1-16, April.
    12. Qiao Yuan & Xiongzhuang Li & Shuo Han & Sijia Wang & Mengting Wang & Rentian Chen & Sergei Kudashev & Tao Wei & Daifen Chen, 2024. "Performance Analysis and Optimization of SOFC/GT Hybrid Systems: A Review," Energies, MDPI, vol. 17(5), pages 1-22, March.
    13. Majidniya, Mahdi & Remy, Benjamin & Boileau, Thierry & Zandi, Majid, 2021. "Free Piston Stirling Engine as a new heat recovery option for an Internal Reforming Solid Oxide Fuel Cell," Renewable Energy, Elsevier, vol. 171(C), pages 1188-1201.
    14. Bakalis, Diamantis P. & Stamatis, Anastassios G., 2013. "Incorporating available micro gas turbines and fuel cell: Matching considerations and performance evaluation," Applied Energy, Elsevier, vol. 103(C), pages 607-617.
    15. Chitsaz, Ata & Sadeghi, Mohsen & Sadeghi, Maesoumeh & Ghanbarloo, Elham, 2018. "Exergoenvironmental comparison of internal reforming against external reforming in a cogeneration system based on solid oxide fuel cell using an evolutionary algorithm," Energy, Elsevier, vol. 144(C), pages 420-431.
    16. Badur, Janusz & Lemański, Marcin & Kowalczyk, Tomasz & Ziółkowski, Paweł & Kornet, Sebastian, 2018. "Zero-dimensional robust model of an SOFC with internal reforming for hybrid energy cycles," Energy, Elsevier, vol. 158(C), pages 128-138.
    17. Kang, Sanggyu & Ahn, Kook-Young, 2017. "Dynamic modeling of solid oxide fuel cell and engine hybrid system for distributed power generation," Applied Energy, Elsevier, vol. 195(C), pages 1086-1099.
    18. Baudoin, Sylvain & Vechiu, Ionel & Camblong, Haritza & Vinassa, Jean-Michel & Barelli, Linda, 2016. "Sizing and control of a Solid Oxide Fuel Cell/Gas microTurbine hybrid power system using a unique inverter for rural microgrid integration," Applied Energy, Elsevier, vol. 176(C), pages 272-281.
    19. Choi, Wonjae & Song, Han Ho, 2020. "Composition-considered Woschni heat transfer correlation: Findings from the analysis of over-expected engine heat losses in a solid oxide fuel cell–internal combustion engine hybrid system," Energy, Elsevier, vol. 203(C).
    20. Kim, Young Sang & Lee, Young Duk & Ahn, Kook Young, 2020. "System integration and proof-of-concept test results of SOFC–engine hybrid power generation system," Applied Energy, Elsevier, vol. 277(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:229:y:2018:i:c:p:42-62. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.