IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i3p2805-d1057073.html
   My bibliography  Save this article

Thermodynamic Performance Comparisons of Ideal Brayton Cycles Integrated with High Temperature Fuel Cells as Power Sources on Aircraft

Author

Listed:
  • Zhixing Ji

    (School of Power and Energy, Northwestern Polytechnical University, Xi’an 710012, China
    School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Fafu Guo

    (School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Tingting Zhu

    (Department of Thermal and Fluid Engineering, University of Twente, 7522 NB Enschede, The Netherlands)

  • Kunlin Cheng

    (School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Silong Zhang

    (School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Jiang Qin

    (School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Peng Dong

    (School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China)

Abstract

Developing hybrid electric aircraft is propitious to reducing carbon dioxide emissions and fuel consumption. Combustion engines coupled with solid oxide fuel cells are proposed for aircraft propulsion systems, where the compressor is powered by fuel cells instead of turbines. The thermal cycle of the new engine is obviously different from that of conventional combustion engines and can be characterized in the temperature entropy diagram under some reasonable assumptions, which were analyzed and investigated. Performance parameters, such as the specific thrust, are derived and can be expressed by several fundamental thermal parameters. Three different cycles integrating Brayton cycles and SOFC are shown. The main conclusions are as follows: (1) The maximum operating pressure ratio of the Brayton cycles integrated with fuel cells is 32. The maximum thermal efficiency of the cycle at the lowest combustion temperature is 82.2%, while that of the BC is 65.1% at the high combustion temperature. (2) The new cycles can not work if the combustion temperature is lower than 1350 K. Otherwise, the fuel utilization will be too huge.

Suggested Citation

  • Zhixing Ji & Fafu Guo & Tingting Zhu & Kunlin Cheng & Silong Zhang & Jiang Qin & Peng Dong, 2023. "Thermodynamic Performance Comparisons of Ideal Brayton Cycles Integrated with High Temperature Fuel Cells as Power Sources on Aircraft," Sustainability, MDPI, vol. 15(3), pages 1-16, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2805-:d:1057073
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/3/2805/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/3/2805/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ding, Xiaoyi & Lv, Xiaojing & Weng, Yiwu, 2019. "Coupling effect of operating parameters on performance of a biogas-fueled solid oxide fuel cell/gas turbine hybrid system," Applied Energy, Elsevier, vol. 254(C).
    2. Choi, Wonjae & Kim, Jaehyun & Kim, Yongtae & Kim, Seonyeob & Oh, Sechul & Song, Han Ho, 2018. "Experimental study of homogeneous charge compression ignition engine operation fuelled by emulated solid oxide fuel cell anode off-gas," Applied Energy, Elsevier, vol. 229(C), pages 42-62.
    3. González-Espasandín, Óscar & Leo, Teresa J. & Raso, Miguel A. & Navarro, Emilio, 2019. "Direct methanol fuel cell (DMFC) and H2 proton exchange membrane fuel (PEMFC/H2) cell performance under atmospheric flight conditions of Unmanned Aerial Vehicles," Renewable Energy, Elsevier, vol. 130(C), pages 762-773.
    4. Ji, Zhixing & Rokni, Marvin Mikael & Qin, Jiang & Zhang, Silong & Dong, Peng, 2021. "Performance and size optimization of the turbine-less engine integrated solid oxide fuel cells on unmanned aerial vehicles with long endurance," Applied Energy, Elsevier, vol. 299(C).
    5. Kim, Taegyu, 2014. "NaBH4 (sodium borohydride) hydrogen generator with a volume-exchange fuel tank for small unmanned aerial vehicles powered by a PEM (proton exchange membrane) fuel cell," Energy, Elsevier, vol. 69(C), pages 721-727.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D.F. Chuahy, Flavio & Kokjohn, Sage L., 2019. "Solid oxide fuel cell and advanced combustion engine combined cycle: A pathway to 70% electrical efficiency," Applied Energy, Elsevier, vol. 235(C), pages 391-408.
    2. Kim, Jaehyun & Kim, Yongtae & Choi, Wonjae & Ahn, Kook Young & Song, Han Ho, 2020. "Analysis on the operating performance of 5-kW class solid oxide fuel cell-internal combustion engine hybrid system using spark-assisted ignition," Applied Energy, Elsevier, vol. 260(C).
    3. Cai, Haokun & Liu, Liping & Chen, Qiang & Lu, Ping & Dong, Jian, 2016. "Ni-polymer nanogel hybrid particles: A new strategy for hydrogen production from the hydrolysis of dimethylamine-borane and sodium borohydride," Energy, Elsevier, vol. 99(C), pages 129-135.
    4. Yu, Xianxian & Liu, Yang & Tu, Zhengkai & Chan, Siew Hwa, 2023. "Endplate effect in an open-cathode proton exchange membrane fuel cell stack: Phenomenon and resolution," Renewable Energy, Elsevier, vol. 219(P1).
    5. Pan, Z.F. & An, L. & Wen, C.Y., 2019. "Recent advances in fuel cells based propulsion systems for unmanned aerial vehicles," Applied Energy, Elsevier, vol. 240(C), pages 473-485.
    6. Meng, Huanru & Yu, Xianxian & Luo, Xiaobing & Tu, Zhengkai, 2024. "Modelling and operation characteristics of air-cooled PEMFC with metallic bipolar plate used in unmanned aerial vehicle," Energy, Elsevier, vol. 300(C).
    7. Koo, Taehyung & Kim, Young Sang & Lee, Young Duk & Yu, Sangseok & Lee, Dong Keun & Ahn, Kook Young, 2021. "Exergetic evaluation of operation results of 5-kW-class SOFC-HCCI engine hybrid power generation system," Applied Energy, Elsevier, vol. 295(C).
    8. Zhao, Chen & Wang, Fei & Wu, Xiaoyu, 2024. "Analysis and review on air-cooled open cathode proton exchange membrane fuel cells: Bibliometric, environmental adaptation and prospect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    9. Netskina, O.V. & Komova, O.V. & Simagina, V.I. & Odegova, G.V. & Prosvirin, I.P. & Bulavchenko, O.A., 2016. "Aqueous-alkaline NaBH4 solution: The influence of storage duration of solutions on reduction and activity of cobalt catalysts," Renewable Energy, Elsevier, vol. 99(C), pages 1073-1081.
    10. Huang, Yu & Turan, Ali, 2021. "Mechanical equilibrium operation integrated modelling of recuperative solid oxide fuel cell – gas turbine hybrid systems: Design conditions and off-design analysis," Applied Energy, Elsevier, vol. 283(C).
    11. Ji, Zhixing & Qin, Jiang & Cheng, Kunlin & Zhang, Silong & Wang, Zhanxue, 2023. "A comprehensive evaluation of ducted fan hybrid engines integrated with fuel cells for sustainable aviation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    12. Piraino, Francesco & Blekhman, David & Dray, Michael & Fragiacomo, Petronilla, 2021. "Empirically verified analysis of dual pre-cooling system for hydrogen refuelling station," Renewable Energy, Elsevier, vol. 163(C), pages 1612-1625.
    13. Ouyang, Tiancheng & Zhao, Zhongkai & Zhang, Mingliang & Xie, Shutao & Wang, Zhiping, 2022. "A micro off-grid power solution for solid oxide fuel cell waste heat reusing enabled peak load shifting by integrating compressed-air energy storage," Applied Energy, Elsevier, vol. 323(C).
    14. Yu, Xianxian & Cai, Shanshan & Luo, Xiaobing & Tu, Zhengkai, 2024. "Barrel effect in an air-cooled proton exchange membrane fuel cell stack," Energy, Elsevier, vol. 286(C).
    15. Ding, Xiaoyi & Sun, Wei & Harrison, Gareth P. & Lv, Xiaojing & Weng, Yiwu, 2020. "Multi-objective optimization for an integrated renewable, power-to-gas and solid oxide fuel cell/gas turbine hybrid system in microgrid," Energy, Elsevier, vol. 213(C).
    16. Cho, Mingyu & Kim, Yongtae & Ho Song, Han, 2022. "Solid oxide fuel cell–internal combustion engine hybrid system utilizing an internal combustion engine for anode off-gas recirculation, external reforming, and additional power generation," Applied Energy, Elsevier, vol. 328(C).
    17. Meng, Kai & Zhou, Haoran & Chen, Ben & Tu, Zhengkai, 2021. "Dynamic current cycles effect on the degradation characteristic of a H2/O2 proton exchange membrane fuel cell," Energy, Elsevier, vol. 224(C).
    18. Oh, Taek Hyun & Gang, Byeong Gyu & Kim, Hyuntak & Kwon, Sejin, 2015. "Sodium borohydride hydrogen generator using Co–P/Ni foam catalysts for 200 W proton exchange membrane fuel cell system," Energy, Elsevier, vol. 90(P1), pages 1163-1170.
    19. Teresa Donateo, 2024. "Simulation Approaches and Validation Issues for Open-Cathode Fuel Cell Systems in Manned and Unmanned Aerial Vehicles," Energies, MDPI, vol. 17(4), pages 1-38, February.
    20. Yang, Qinwen & Xiao, Gang & Li, Lexi & Che, Mengjie & Hu, Xu-Qu & Meng, Min, 2021. "Collaborative design of multi-type parameters for design and operational stage matching in fuel cells," Renewable Energy, Elsevier, vol. 175(C), pages 1101-1110.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2805-:d:1057073. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.