IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v97y2012icp618-629.html
   My bibliography  Save this article

Experimental evaluation of strategies to increase the operating range of a biogas-fueled HCCI engine for power generation

Author

Listed:
  • Bedoya, Iván D.
  • Saxena, Samveg
  • Cadavid, Francisco J.
  • Dibble, Robert W.
  • Wissink, Martin

Abstract

In this research oxygen enrichment, gasoline pilot port injection, and delayed time of 50% cumulative heat release (CA50) are evaluated to expand the range for stable and safe combustion of a lean-burning biogas-fueled HCCI engine. A 4-cylinder 1.9L Volkswagen TDI engine was modified to run in HCCI mode at 1800rpm, and boost pressures and charge heating are used to promote autoignition of the biogas-in-air mixture at desired combustion timings. A typical biogas composition of 60% CH4 and 40% CO2 in a volumetric basis was simulated by controlling the CH4 and CO2 flow rates. A range of 2–2.2bar absolute intake pressure and 473–483K initial charge temperatures allowed HCCI operation. At lowest equivalence ratio (0.25) excessive cycle-to-cycle variations were observed and at highest equivalence ratio (0.4) unacceptable ringing intensities were observed. To reduce cycle-to-cycle variability at low equivalence ratios, two strategies were used in enhancing the autoignition behavior of biogas: (1) oxygen enrichment of the inducted charge, and (2) gasoline pilot port injection. To increase gross Indicated Mean Effective Pressure (IMEPg) without excessive ringing intensities at high equivalence ratios, delayed CA50 was used. Oxygen enrichment increased cycle-to-cycle variability and total hydrocarbon emissions because of decreased burning rates and delayed CA50. Gasoline pilot port injection lowered cycle-to-cycle variability, CO and THC emissions, and increased IMEPg at low loads. Higher IMEPg was achieved with high equivalence ratios (above 0.4) and ringing intensities were kept within acceptable limits using delayed CA50, however NOx emission was increased also.

Suggested Citation

  • Bedoya, Iván D. & Saxena, Samveg & Cadavid, Francisco J. & Dibble, Robert W. & Wissink, Martin, 2012. "Experimental evaluation of strategies to increase the operating range of a biogas-fueled HCCI engine for power generation," Applied Energy, Elsevier, vol. 97(C), pages 618-629.
  • Handle: RePEc:eee:appene:v:97:y:2012:i:c:p:618-629
    DOI: 10.1016/j.apenergy.2012.01.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912000141
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.01.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maurya, Rakesh Kumar & Agarwal, Avinash Kumar, 2011. "Experimental investigation on the effect of intake air temperature and air-fuel ratio on cycle-to-cycle variations of HCCI combustion and performance parameters," Applied Energy, Elsevier, vol. 88(4), pages 1153-1163, April.
    2. Pöschl, Martina & Ward, Shane & Owende, Philip, 2010. "Evaluation of energy efficiency of various biogas production and utilization pathways," Applied Energy, Elsevier, vol. 87(11), pages 3305-3321, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alarico Macor & Alberto Benato, 2020. "Regulated Emissions of Biogas Engines—On Site Experimental Measurements and Damage Assessment on Human Health," Energies, MDPI, vol. 13(5), pages 1-38, February.
    2. Kozarac, Darko & Taritas, Ivan & Vuilleumier, David & Saxena, Samveg & Dibble, Robert W., 2016. "Experimental and numerical analysis of the performance and exhaust gas emissions of a biogas/n-heptane fueled HCCI engine," Energy, Elsevier, vol. 115(P1), pages 180-193.
    3. Komninos, N.P., 2015. "The effect of thermal stratification on HCCI combustion: A numerical investigation," Applied Energy, Elsevier, vol. 139(C), pages 291-302.
    4. Zhang, Wei & Chen, Zhaohui & Li, Weidong & Shu, Gequn & Xu, Biao & Shen, Yinggang, 2013. "Influence of EGR and oxygen-enriched air on diesel engine NO–Smoke emission and combustion characteristic," Applied Energy, Elsevier, vol. 107(C), pages 304-314.
    5. Saxena, Samveg & Schneider, Silvan & Aceves, Salvador & Dibble, Robert, 2012. "Wet ethanol in HCCI engines with exhaust heat recovery to improve the energy balance of ethanol fuels," Applied Energy, Elsevier, vol. 98(C), pages 448-457.
    6. Choi, Wonjae & Kim, Jaehyun & Kim, Yongtae & Kim, Seonyeob & Oh, Sechul & Song, Han Ho, 2018. "Experimental study of homogeneous charge compression ignition engine operation fuelled by emulated solid oxide fuel cell anode off-gas," Applied Energy, Elsevier, vol. 229(C), pages 42-62.
    7. Yağlı, Hüseyin & Koç, Yıldız & Koç, Ali & Görgülü, Adnan & Tandiroğlu, Ahmet, 2016. "Parametric optimization and exergetic analysis comparison of subcritical and supercritical organic Rankine cycle (ORC) for biogas fuelled combined heat and power (CHP) engine exhaust gas waste heat," Energy, Elsevier, vol. 111(C), pages 923-932.
    8. Mohamed Ibrahim, M. & Varuna Narasimhan, J. & Ramesh, A., 2015. "Comparison of the predominantly premixed charge compression ignition and the dual fuel modes of operation with biogas and diesel as fuels," Energy, Elsevier, vol. 89(C), pages 990-1000.
    9. Andwari, Amin Mahmoudzadeh & Aziz, Azhar Abdul & Said, Mohd Farid Muhamad & Latiff, Zulkarnain Abdul, 2014. "Experimental investigation of the influence of internal and external EGR on the combustion characteristics of a controlled auto-ignition two-stroke cycle engine," Applied Energy, Elsevier, vol. 134(C), pages 1-10.
    10. Kadam, Rahul & Panwar, N.L., 2017. "Recent advancement in biogas enrichment and its applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 892-903.
    11. Yang, Bo & Xi, Chengxun & Wei, Xing & Zeng, Ke & Lai, Ming-Chia, 2015. "Parametric investigation of natural gas port injection and diesel pilot injection on the combustion and emissions of a turbocharged common rail dual-fuel engine at low load," Applied Energy, Elsevier, vol. 143(C), pages 130-137.
    12. Broekaert, Stijn & De Cuyper, Thomas & De Paepe, Michel & Verhelst, Sebastian, 2017. "Evaluation of empirical heat transfer models for HCCI combustion in a CFR engine," Applied Energy, Elsevier, vol. 205(C), pages 1141-1150.
    13. Sebastián H. Quintana & Andrés D. Morales Rojas & Iván D. Bedoya, 2023. "Experimental and Numerical Evaluation of an HCCI Engine Fueled with Biogas for Power Generation under Sub-Atmospheric Conditions," Energies, MDPI, vol. 16(17), pages 1-21, August.
    14. Esfahanian, Vahid & Salahi, Mohammad Mahdi & Gharehghani, Ayatallah & Mirsalim, Mostafa, 2017. "Extending the lean operating range of a premixed charged compression ignition natural gas engine using a pre-chamber," Energy, Elsevier, vol. 119(C), pages 1181-1194.
    15. Qian, Yong & Sun, Shuzhou & Ju, Dehao & Shan, Xinxing & Lu, Xingcai, 2017. "Review of the state-of-the-art of biogas combustion mechanisms and applications in internal combustion engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 50-58.
    16. KeChrist Obileke & Nwabunwanne Nwokolo & Golden Makaka & Patrick Mukumba & Helen Onyeaka, 2021. "Anaerobic digestion: Technology for biogas production as a source of renewable energy—A review," Energy & Environment, , vol. 32(2), pages 191-225, March.
    17. Lee, Sunyoup & Park, Seunghyun & Kim, Changgi & Kim, Young-Min & Kim, Yongrae & Park, Cheolwoong, 2014. "Comparative study on EGR and lean burn strategies employed in an SI engine fueled by low calorific gas," Applied Energy, Elsevier, vol. 129(C), pages 10-16.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huopana, Tuomas & Song, Han & Kolehmainen, Mikko & Niska, Harri, 2013. "A regional model for sustainable biogas electricity production: A case study from a Finnish province," Applied Energy, Elsevier, vol. 102(C), pages 676-686.
    2. Masurier, J.-B. & Foucher, F. & Dayma, G. & Dagaut, P., 2015. "Ozone applied to the homogeneous charge compression ignition engine to control alcohol fuels combustion," Applied Energy, Elsevier, vol. 160(C), pages 566-580.
    3. Ghazimirsaied, Ahmad & Koch, Charles Robert, 2012. "Controlling cyclic combustion timing variations using a symbol-statistics predictive approach in an HCCI engine," Applied Energy, Elsevier, vol. 92(C), pages 133-146.
    4. Thompson, T.M. & Young, B.R. & Baroutian, S., 2020. "Pelagic Sargassum for energy and fertiliser production in the Caribbean: A case study on Barbados," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    5. Jain, Ayush & Singh, Akhilendra Pratap & Agarwal, Avinash Kumar, 2017. "Effect of split fuel injection and EGR on NOx and PM emission reduction in a low temperature combustion (LTC) mode diesel engine," Energy, Elsevier, vol. 122(C), pages 249-264.
    6. Jung, Dongwon & Iida, Norimasa, 2015. "Closed-loop control of HCCI combustion for DME using external EGR and rebreathed EGR to reduce pressure-rise rate with combustion-phasing retard," Applied Energy, Elsevier, vol. 138(C), pages 315-330.
    7. Bekkering, J. & Hengeveld, E.J. & van Gemert, W.J.T. & Broekhuis, A.A., 2015. "Will implementation of green gas into the gas supply be feasible in the future?," Applied Energy, Elsevier, vol. 140(C), pages 409-417.
    8. Ciliberti, Carlo & Jordaan, Sarah M. & Smith, Stephen V. & Spatari, Sabrina, 2016. "A life cycle perspective on land use and project economics of electricity from wind and anaerobic digestion," Energy Policy, Elsevier, vol. 89(C), pages 52-63.
    9. Santagata, R. & Ripa, M. & Ulgiati, S., 2017. "An environmental assessment of electricity production from slaughterhouse residues. Linking urban, industrial and waste management systems," Applied Energy, Elsevier, vol. 186(P2), pages 175-188.
    10. Bacenetti, Jacopo & Sala, Cesare & Fusi, Alessandra & Fiala, Marco, 2016. "Agricultural anaerobic digestion plants: What LCA studies pointed out and what can be done to make them more environmentally sustainable," Applied Energy, Elsevier, vol. 179(C), pages 669-686.
    11. Höhn, J. & Lehtonen, E. & Rasi, S. & Rintala, J., 2014. "A Geographical Information System (GIS) based methodology for determination of potential biomasses and sites for biogas plants in southern Finland," Applied Energy, Elsevier, vol. 113(C), pages 1-10.
    12. An, Yanzhao & Raman, Vallinayagam & Tang, Qinglong & Shi, Hao & Sim, Jaeheon & Chang, Junseok & Magnotti, Gaetano & Johansson, Bengt, 2019. "Combustion stability study of partially premixed combustion with low-octane fuel at low engine load conditions," Applied Energy, Elsevier, vol. 235(C), pages 56-67.
    13. Massimiliano Boccarossa & Martina Di Addario & Adele Folino & Fabio Tatàno, 2021. "Scenarios of Bioenergy Recovery from Organic Fraction of Residual Municipal Waste in the Marche Region (Italy)," Sustainability, MDPI, vol. 13(20), pages 1-20, October.
    14. Herz, Gregor & Reichelt, Erik & Jahn, Matthias, 2017. "Design and evaluation of a Fischer-Tropsch process for the production of waxes from biogas," Energy, Elsevier, vol. 132(C), pages 370-381.
    15. Seckin, Candeniz & Bayulken, Ahmet R., 2013. "Extended Exergy Accounting (EEA) analysis of municipal wastewater treatment – Determination of environmental remediation cost for municipal wastewater," Applied Energy, Elsevier, vol. 110(C), pages 55-64.
    16. Uddin, Md Mosleh & Simson, Amanda & Wright, Mark Mba, 2020. "Techno-economic and greenhouse gas emission analysis of dimethyl ether production via the bi-reforming pathway for transportation fuel," Energy, Elsevier, vol. 211(C).
    17. Katinas, Vladislovas & Marčiukaitis, Mantas & Perednis, Eugenijus & Dzenajavičienė, Eugenija Farida, 2019. "Analysis of biodegradable waste use for energy generation in Lithuania," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 559-567.
    18. Maurya, Rakesh Kumar & Agarwal, Avinash Kumar, 2013. "Experimental investigation of cyclic variations in HCCI combustion parameters for gasoline like fuels using statistical methods," Applied Energy, Elsevier, vol. 111(C), pages 310-323.
    19. Nur Izzah Hamna A. Aziz & Marlia M. Hanafiah & Shabbir H. Gheewala & Haikal Ismail, 2020. "Bioenergy for a Cleaner Future: A Case Study of Sustainable Biogas Supply Chain in the Malaysian Energy Sector," Sustainability, MDPI, vol. 12(8), pages 1-24, April.
    20. Mehta, Neha & Anderson, Aine & Johnston, Christopher R. & Rooney, David W., 2022. "Evaluating the opportunity for utilising anaerobic digestion and pyrolysis of livestock manure and grass silage to decarbonise gas infrastructure: A Northern Ireland case study," Renewable Energy, Elsevier, vol. 196(C), pages 343-357.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:97:y:2012:i:c:p:618-629. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.