IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v218y2021ics0360544220326554.html
   My bibliography  Save this article

Effective H2S control during chemical looping combustion by iron ore modified with alkaline earth metal oxides

Author

Listed:
  • Wang, Haiming
  • Liu, Guicai
  • Veksha, Andrei
  • Giannis, Apostolos
  • Lim, Teik-Thye
  • Lisak, Grzegorz

Abstract

Iron ore (IO) modified with alkaline earth metal (AEM) oxides were developed as oxygen carriers (OCs) for the chemical looping combustion (CLC) of simulated municipal solid waste (MSW) syngas to simultaneously reduce the H2S emission. The AEM oxides, especially BaO, were found to improve the CLC performance of IO greatly due to the formation of AEM ferrites, which promoted the lattice oxygen activity. When using the pristine IO, less than 10% of the input H2S could be removed with the remaining being released from the reactor mainly in the form of SO2. The loadings of CaO and MgO were also found to be ineffective in sulfur removal from the syngas, because the sulfur fixation reactions were kinetically and thermodynamically limited for CaO and MgO, respectively. By contrast, over 60% of the input H2S was effectively retained on the BaO-loaded OC in the form of sulfates/sulfites because of the high reactivity between BaCO3 and H2S in the presence of Fe2O3. This study indicates that the IO loaded with BaO showed superior performance both in CLC of syngas and control of sulfur species, which can be used in the CLC of sulfur containing fuels to realize a cleaner combustion process.

Suggested Citation

  • Wang, Haiming & Liu, Guicai & Veksha, Andrei & Giannis, Apostolos & Lim, Teik-Thye & Lisak, Grzegorz, 2021. "Effective H2S control during chemical looping combustion by iron ore modified with alkaline earth metal oxides," Energy, Elsevier, vol. 218(C).
  • Handle: RePEc:eee:energy:v:218:y:2021:i:c:s0360544220326554
    DOI: 10.1016/j.energy.2020.119548
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220326554
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.119548?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chan, Wei Ping & Veksha, Andrei & Lei, Junxi & Oh, Wen-Da & Dou, Xiaomin & Giannis, Apostolos & Lisak, Grzegorz & Lim, Teik-Thye, 2019. "A hot syngas purification system integrated with downdraft gasification of municipal solid waste," Applied Energy, Elsevier, vol. 237(C), pages 227-240.
    2. García-Labiano, F. & de Diego, L.F. & Gayán, P. & Abad, A. & Cabello, A. & Adánez, J. & Sprachmann, G., 2014. "Energy exploitation of acid gas with high H2S content by means of a chemical looping combustion system," Applied Energy, Elsevier, vol. 136(C), pages 242-249.
    3. Wang, Haiming & Dou, Xiaomin & Veksha, Andrei & Liu, Wen & Giannis, Apostolos & Ge, Liya & Thye Lim, Teik & Lisak, Grzegorz, 2020. "Barium aluminate improved iron ore for the chemical looping combustion of syngas," Applied Energy, Elsevier, vol. 272(C).
    4. Nandy, Anirban & Loha, Chanchal & Gu, Sai & Sarkar, Pinaki & Karmakar, Malay K. & Chatterjee, Pradip K., 2016. "Present status and overview of Chemical Looping Combustion technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 597-619.
    5. Moldenhauer, Patrick & Rydén, Magnus & Mattisson, Tobias & Younes, Mourad & Lyngfelt, Anders, 2014. "The use of ilmenite as oxygen carrier with kerosene in a 300W CLC laboratory reactor with continuous circulation," Applied Energy, Elsevier, vol. 113(C), pages 1846-1854.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ranwei Ren & Haiming Wang & Changfu You, 2022. "Steam Gasification of Refuse-Derived Fuel with CaO Modification for Hydrogen-Rich Syngas Production," Energies, MDPI, vol. 15(21), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. García-Labiano, Francisco & de Diego, Luis F. & Cabello, Arturo & Gayán, Pilar & Abad, Alberto & Adánez, Juan & Sprachmann, Gerald, 2016. "Sulphuric acid production via Chemical Looping Combustion of elemental sulphur," Applied Energy, Elsevier, vol. 178(C), pages 736-745.
    2. Adnan, Muflih A. & Azis, Muhammad Mufti & Quddus, Mohammad R. & Hossain, Mohammad M., 2018. "Integrated liquid fuel based chemical looping combustion – parametric study for efficient power generation and CO2 capture," Applied Energy, Elsevier, vol. 228(C), pages 2398-2406.
    3. Wang, Haiming & Dou, Xiaomin & Veksha, Andrei & Liu, Wen & Giannis, Apostolos & Ge, Liya & Thye Lim, Teik & Lisak, Grzegorz, 2020. "Barium aluminate improved iron ore for the chemical looping combustion of syngas," Applied Energy, Elsevier, vol. 272(C).
    4. Ben-Mansour, R. & Li, H. & Habib, M.A., 2017. "Effects of oxygen carrier mole fraction, velocity distribution on conversion performance using an experimentally validated mathematical model of a CLC fuel reactor," Applied Energy, Elsevier, vol. 208(C), pages 803-819.
    5. Rajabi, Mahsa & Mehrpooya, Mehdi & Haibo, Zhao & Huang, Zhen, 2019. "Chemical looping technology in CHP (combined heat and power) and CCHP (combined cooling heating and power) systems: A critical review," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    6. Chein, Rei-Yu & Hsu, Wen-Huai, 2019. "Thermodynamic analysis of syngas production via chemical looping dry reforming of methane," Energy, Elsevier, vol. 180(C), pages 535-547.
    7. Hu, Wenting & Donat, Felix & Scott, S.A. & Dennis, J.S., 2016. "Kinetics of oxygen uncoupling of a copper based oxygen carrier," Applied Energy, Elsevier, vol. 161(C), pages 92-100.
    8. Adnan, Muflih A. & Hossain, Mohammad M. & Golam Kibria, Md, 2022. "Converting waste into fuel via integrated thermal and electrochemical routes: An analysis of thermodynamic approach on thermal conversion," Applied Energy, Elsevier, vol. 311(C).
    9. Di, Zichen & Yilmaz, Duygu & Biswas, Arijit & Cheng, Fangqin & Leion, Henrik, 2022. "Spinel ferrite-contained industrial materials as oxygen carriers in chemical looping combustion," Applied Energy, Elsevier, vol. 307(C).
    10. Nandy, Anirban & Loha, Chanchal & Gu, Sai & Sarkar, Pinaki & Karmakar, Malay K. & Chatterjee, Pradip K., 2016. "Present status and overview of Chemical Looping Combustion technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 597-619.
    11. Khakpoor, Nima & Mostafavi, Ehsan & Mahinpey, Nader & De la Hoz Siegler, Hector, 2019. "Oxygen transport capacity and kinetic study of ilmenite ores for methane chemical-looping combustion," Energy, Elsevier, vol. 169(C), pages 329-337.
    12. Zhang, Jinzhi & He, Tao & Wang, Zhiqi & Zhu, Min & Zhang, Ke & Li, Bin & Wu, Jinhu, 2017. "The search of proper oxygen carriers for chemical looping partial oxidation of carbon," Applied Energy, Elsevier, vol. 190(C), pages 1119-1125.
    13. Sajid, Muhammad & Raheem, Abdul & Ullah, Naeem & Asim, Muhammad & Ur Rehman, Muhammad Saif & Ali, Nisar, 2022. "Gasification of municipal solid waste: Progress, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    14. Yaqub, Z.T. & Oboirien, B.O. & Leion, H., 2024. "Process optimization of chemical looping combustion of solid waste/biomass using machine learning algorithm," Renewable Energy, Elsevier, vol. 225(C).
    15. Beatrice Muriungi & Lijun Wang & Abolghasem Shahbazi, 2020. "Comparison of Bimetallic Fe-Cu and Fe-Ca Oxygen Carriers for Biomass Gasification," Energies, MDPI, vol. 13(8), pages 1-11, April.
    16. Carlos Arnaiz del Pozo & Susana Sánchez-Orgaz & Alberto Navarro-Calvo & Ángel Jiménez Álvaro & Schalk Cloete, 2024. "Integration of Chemical Looping Combustion in the Graz Power Cycle," Energies, MDPI, vol. 17(10), pages 1-28, May.
    17. Siriwardane, Ranjani & Riley, Jarrett & Benincosa, William & Bayham, Samuel & Bobek, Michael & Straub, Douglas & Weber, Justin, 2021. "Development of CuFeMnAlO4+δ oxygen carrier with high attrition resistance and 50-kWth methane/air chemical looping combustion tests," Applied Energy, Elsevier, vol. 286(C).
    18. Kirtania, Bidesh & Shilapuram, Vidyasagar, 2023. "Performance evaluation of a flexible CO2-ORC and sorbent regeneration integrated novel dry gasification oxy-combustion power cycle for in-situ sulphur capture, CO2 capture and power generation," Energy, Elsevier, vol. 282(C).
    19. Siriwardane, Ranjani & Riley, Jarrett & Bayham, Samuel & Straub, Douglas & Tian, Hanjing & Weber, Justin & Richards, George, 2018. "50-kWth methane/air chemical looping combustion tests with commercially prepared CuO-Fe2O3-alumina oxygen carrier with two different techniques," Applied Energy, Elsevier, vol. 213(C), pages 92-99.
    20. Krzywanski, J. & Czakiert, T. & Nowak, W. & Shimizu, T. & Zylka, A. & Idziak, K. & Sosnowski, M. & Grabowska, K., 2022. "Gaseous emissions from advanced CLC and oxyfuel fluidized bed combustion of coal and biomass in a complex geometry facility:A comprehensive model," Energy, Elsevier, vol. 251(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:218:y:2021:i:c:s0360544220326554. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.