Integration of Chemical Looping Combustion in the Graz Power Cycle
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Nandy, Anirban & Loha, Chanchal & Gu, Sai & Sarkar, Pinaki & Karmakar, Malay K. & Chatterjee, Pradip K., 2016. "Present status and overview of Chemical Looping Combustion technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 597-619.
- Ströhle, Jochen & Orth, Matthias & Epple, Bernd, 2015. "Chemical looping combustion of hard coal in a 1MWth pilot plant using ilmenite as oxygen carrier," Applied Energy, Elsevier, vol. 157(C), pages 288-294.
- Chao, Cong & Deng, Yimin & Dewil, Raf & Baeyens, Jan & Fan, Xianfeng, 2021. "Post-combustion carbon capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
- García-Labiano, Francisco & de Diego, Luis F. & Cabello, Arturo & Gayán, Pilar & Abad, Alberto & Adánez, Juan & Sprachmann, Gerald, 2016. "Sulphuric acid production via Chemical Looping Combustion of elemental sulphur," Applied Energy, Elsevier, vol. 178(C), pages 736-745.
- Carlos Arnaiz del Pozo & Ángel Jiménez Álvaro & Schalk Cloete & Jose Antonio García del Pozo Martín de Hijas, 2023. "The Potential of Chemically Recuperated Power Cycles in Markets with High Shares of Variable Renewables," Energies, MDPI, vol. 16(20), pages 1-22, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Rajabi, Mahsa & Mehrpooya, Mehdi & Haibo, Zhao & Huang, Zhen, 2019. "Chemical looping technology in CHP (combined heat and power) and CCHP (combined cooling heating and power) systems: A critical review," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Siriwardane, Ranjani & Riley, Jarrett & Benincosa, William & Bayham, Samuel & Bobek, Michael & Straub, Douglas & Weber, Justin, 2021. "Development of CuFeMnAlO4+δ oxygen carrier with high attrition resistance and 50-kWth methane/air chemical looping combustion tests," Applied Energy, Elsevier, vol. 286(C).
- Zhu, Lin & He, Yangdong & Li, Luling & Wu, Pengbin, 2018. "Tech-economic assessment of second-generation CCS: Chemical looping combustion," Energy, Elsevier, vol. 144(C), pages 915-927.
- Ben-Mansour, R. & Li, H. & Habib, M.A., 2017. "Effects of oxygen carrier mole fraction, velocity distribution on conversion performance using an experimentally validated mathematical model of a CLC fuel reactor," Applied Energy, Elsevier, vol. 208(C), pages 803-819.
- Song, Xueyi & Yuan, Junjie & Yang, Chen & Deng, Gaofeng & Wang, Zhichao & Gao, Jubao, 2023. "Carbon dioxide separation performance evaluation of amine-based versus choline-based deep eutectic solvents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
- Andrea Di Giuliano & Stefania Lucantonio & Katia Gallucci, 2021. "Devolatilization of Residual Biomasses for Chemical Looping Gasification in Fluidized Beds Made Up of Oxygen-Carriers," Energies, MDPI, vol. 14(2), pages 1-16, January.
- Jia Liu & Shuo Li & Raf Dewil & Maarten Vanierschot & Jan Baeyens & Yimin Deng, 2022. "Water Splitting by MnO x /Na 2 CO 3 Reversible Redox Reactions," Sustainability, MDPI, vol. 14(13), pages 1-15, June.
- Lu, Xuao & Rahman, Ryad A. & Lu, Dennis Y. & Ridha, Firas N. & Duchesne, Marc A. & Tan, Yewen & Hughes, Robin W., 2016. "Pressurized chemical looping combustion with CO: Reduction reactivity and oxygen-transport capacity of ilmenite ore," Applied Energy, Elsevier, vol. 184(C), pages 132-139.
- Yin, Weijie & Wang, Shuai & Zhang, Kai & He, Yurong, 2020. "Numerical investigation of in situ gasification chemical looping combustion of biomass in a fluidized bed reactor," Renewable Energy, Elsevier, vol. 151(C), pages 216-225.
- Li, Qiangwei & Huang, Xin & Li, Nuo & Qi, Tieyue & Wang, Rujie & Wang, Lidong & An, Shanlong, 2024. "Energy-efficient biphasic solvents for industrial CO2 capture: Absorption mechanism and stability characteristics," Energy, Elsevier, vol. 293(C).
- Zhang, Yitao & Wang, Dawei & Pottimurthy, Yaswanth & Kong, Fanhe & Hsieh, Tien-Lin & Sakadjian, Bartev & Chung, Cheng & Park, Cody & Xu, Dikai & Bao, Jinhua & Velazquez-Vargas, Luis & Guo, Mengqing & , 2021. "Coal direct chemical looping process: 250 kW pilot-scale testing for power generation and carbon capture," Applied Energy, Elsevier, vol. 282(PA).
- Cerciello, Francesca & Coppola, Antonio & Lacovig, Paolo & Senneca, Osvalda & Salatino, Piero, 2021. "Characterization of surface-oxides on char under periodically changing oxidation/desorption conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
- Guo, Juncheng & Tan, Chaohuan & Li, Zhexu & Chen, Bo & Yang, Hanxin & Luo, Rongxiang & Gonzalez-Ayala, Julian & Hernández, A. Calvo, 2024. "New insights into energy conversion mechanism, optimal absorbent selection criteria, and operation strategies of absorption carbon capture systems," Energy, Elsevier, vol. 304(C).
- Georgios Varvoutis & Athanasios Lampropoulos & Evridiki Mandela & Michalis Konsolakis & George E. Marnellos, 2022. "Recent Advances on CO 2 Mitigation Technologies: On the Role of Hydrogenation Route via Green H 2," Energies, MDPI, vol. 15(13), pages 1-38, June.
- McLaughlin, Hope & Littlefield, Anna A. & Menefee, Maia & Kinzer, Austin & Hull, Tobias & Sovacool, Benjamin K. & Bazilian, Morgan D. & Kim, Jinsoo & Griffiths, Steven, 2023. "Carbon capture utilization and storage in review: Sociotechnical implications for a carbon reliant world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
- Wang, Haiming & Liu, Guicai & Veksha, Andrei & Giannis, Apostolos & Lim, Teik-Thye & Lisak, Grzegorz, 2021. "Effective H2S control during chemical looping combustion by iron ore modified with alkaline earth metal oxides," Energy, Elsevier, vol. 218(C).
- Alobaid, Falah & Ohlemüller, Peter & Ströhle, Jochen & Epple, Bernd, 2015. "Extended Euler–Euler model for the simulation of a 1 MWth chemical–looping pilot plant," Energy, Elsevier, vol. 93(P2), pages 2395-2405.
- Fan, Junming & Zhu, Lin & Hong, Hui & Jiang, Qiongqiong & Jin, Hongguang, 2017. "A thermodynamic and environmental performance of in-situ gasification of chemical looping combustion for power generation using ilmenite with different coals and comparison with other coal-driven powe," Energy, Elsevier, vol. 119(C), pages 1171-1180.
- Gunawan, Tubagus Aryandi & Luo, Hongxi & Greig, Chris & Larson, Eric, 2024. "Shared CO₂ capture, transport, and storage for decarbonizing industrial clusters," Applied Energy, Elsevier, vol. 359(C).
- Chein, Rei-Yu & Hsu, Wen-Huai, 2019. "Thermodynamic analysis of syngas production via chemical looping dry reforming of methane," Energy, Elsevier, vol. 180(C), pages 535-547.
More about this item
Keywords
carbon capture and storage; chemical looping combustion; Graz cycle; efficiency; exergy; techno-economic assessment;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:10:p:2334-:d:1393129. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.