IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v157y2015icp449-461.html
   My bibliography  Save this article

Mathematical modeling of a two-stage fuel reactor for chemical looping combustion with oxygen uncoupling of solid fuels

Author

Listed:
  • Coppola, Antonio
  • Solimene, Roberto
  • Bareschino, Piero
  • Salatino, Piero

Abstract

The success of a Chemical Looping Combustion (CLC) process for solid fossil fuel combustion is critically affected by the performance of the oxygen carrier and by proper design and operation of the fuel reactor.

Suggested Citation

  • Coppola, Antonio & Solimene, Roberto & Bareschino, Piero & Salatino, Piero, 2015. "Mathematical modeling of a two-stage fuel reactor for chemical looping combustion with oxygen uncoupling of solid fuels," Applied Energy, Elsevier, vol. 157(C), pages 449-461.
  • Handle: RePEc:eee:appene:v:157:y:2015:i:c:p:449-461
    DOI: 10.1016/j.apenergy.2015.04.052
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915005140
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.04.052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luo, Siwei & Bayham, Samuel & Zeng, Liang & McGiveron, Omar & Chung, Elena & Majumder, Ankita & Fan, Liang-Shih, 2014. "Conversion of metallurgical coke and coal using a Coal Direct Chemical Looping (CDCL) moving bed reactor," Applied Energy, Elsevier, vol. 118(C), pages 300-308.
    2. Tong, Andrew & Bayham, Samuel & Kathe, Mandar V. & Zeng, Liang & Luo, Siwei & Fan, Liang-Shih, 2014. "Iron-based syngas chemical looping process and coal-direct chemical looping process development at Ohio State University," Applied Energy, Elsevier, vol. 113(C), pages 1836-1845.
    3. Thon, Andreas & Kramp, Marvin & Hartge, Ernst-Ulrich & Heinrich, Stefan & Werther, Joachim, 2014. "Operational experience with a system of coupled fluidized beds for chemical looping combustion of solid fuels using ilmenite as oxygen carrier," Applied Energy, Elsevier, vol. 118(C), pages 309-317.
    4. Bayham, Samuel & McGiveron, Omar & Tong, Andrew & Chung, Elena & Kathe, Mandar & Wang, Dawei & Zeng, Liang & Fan, Liang-Shih, 2015. "Parametric and dynamic studies of an iron-based 25-kWth coal direct chemical looping unit using sub-bituminous coal," Applied Energy, Elsevier, vol. 145(C), pages 354-363.
    5. Clayton, Christopher K. & Whitty, Kevin J., 2014. "Measurement and modeling of decomposition kinetics for copper oxide-based chemical looping with oxygen uncoupling," Applied Energy, Elsevier, vol. 116(C), pages 416-423.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diglio, Giuseppe & Hanak, Dawid P. & Bareschino, Piero & Pepe, Francesco & Montagnaro, Fabio & Manovic, Vasilije, 2018. "Modelling of sorption-enhanced steam methane reforming in a fixed bed reactor network integrated with fuel cell," Applied Energy, Elsevier, vol. 210(C), pages 1-15.
    2. Ben-Mansour, R. & Li, H. & Habib, M.A., 2017. "Effects of oxygen carrier mole fraction, velocity distribution on conversion performance using an experimentally validated mathematical model of a CLC fuel reactor," Applied Energy, Elsevier, vol. 208(C), pages 803-819.
    3. Nandy, Anirban & Loha, Chanchal & Gu, Sai & Sarkar, Pinaki & Karmakar, Malay K. & Chatterjee, Pradip K., 2016. "Present status and overview of Chemical Looping Combustion technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 597-619.
    4. Iloeje, Chukwunwike O. & Zhao, Zhenlong & Ghoniem, Ahmed F., 2017. "A reduced fidelity model for the rotary chemical looping combustion reactor," Applied Energy, Elsevier, vol. 190(C), pages 725-739.
    5. Bareschino, P. & Mancusi, E. & Urciuolo, M. & Paulillo, A. & Chirone, R. & Pepe, F., 2020. "Life cycle assessment and feasibility analysis of a combined chemical looping combustion and power-to-methane system for CO2 capture and utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    6. Mancusi, E. & Bareschino, P. & Brachi, P. & Coppola, A. & Ruoppolo, G. & Urciuolo, M. & Pepe, F., 2021. "Feasibility of an integrated biomass-based CLC combustion and a renewable-energy-based methanol production systems," Renewable Energy, Elsevier, vol. 179(C), pages 29-36.
    7. Siriwardane, Ranjani & Benincosa, William & Riley, Jarrett & Tian, Hanjing & Richards, George, 2016. "Investigation of reactions in a fluidized bed reactor during chemical looping combustion of coal/steam with copper oxide-iron oxide-alumina oxygen carrier," Applied Energy, Elsevier, vol. 183(C), pages 1550-1564.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siriwardane, Ranjani & Benincosa, William & Riley, Jarrett & Tian, Hanjing & Richards, George, 2016. "Investigation of reactions in a fluidized bed reactor during chemical looping combustion of coal/steam with copper oxide-iron oxide-alumina oxygen carrier," Applied Energy, Elsevier, vol. 183(C), pages 1550-1564.
    2. Zhang, Yitao & Wang, Dawei & Pottimurthy, Yaswanth & Kong, Fanhe & Hsieh, Tien-Lin & Sakadjian, Bartev & Chung, Cheng & Park, Cody & Xu, Dikai & Bao, Jinhua & Velazquez-Vargas, Luis & Guo, Mengqing & , 2021. "Coal direct chemical looping process: 250 kW pilot-scale testing for power generation and carbon capture," Applied Energy, Elsevier, vol. 282(PA).
    3. Samuel C. Bayham & Andrew Tong & Mandar Kathe & Liang-Shih Fan, 2016. "Chemical looping technology for energy and chemical production," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(2), pages 216-241, March.
    4. Xiaosong Zhang & Sheng Li & Hongguang Jin, 2014. "A Polygeneration System Based on Multi-Input Chemical Looping Combustion," Energies, MDPI, vol. 7(11), pages 1-12, November.
    5. Nandy, Anirban & Loha, Chanchal & Gu, Sai & Sarkar, Pinaki & Karmakar, Malay K. & Chatterjee, Pradip K., 2016. "Present status and overview of Chemical Looping Combustion technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 597-619.
    6. Zhang, Hao & Hong, Hui & Jiang, Qiongqiong & Deng, Ya'nan & Jin, Hongguang & Kang, Qilan, 2018. "Development of a chemical-looping combustion reactor having porous honeycomb chamber and experimental validation by using NiO/NiAl2O4," Applied Energy, Elsevier, vol. 211(C), pages 259-268.
    7. Zhang, Hao & Liu, Xiangyu & Hong, Hui & Jin, Hongguang, 2018. "Characteristics of a 10 kW honeycomb reactor for natural gas fueled chemical-looping combustion," Applied Energy, Elsevier, vol. 213(C), pages 285-292.
    8. Galinsky, Nathan & Mishra, Amit & Zhang, Jia & Li, Fanxing, 2015. "Ca1−xAxMnO3 (A=Sr and Ba) perovskite based oxygen carriers for chemical looping with oxygen uncoupling (CLOU)," Applied Energy, Elsevier, vol. 157(C), pages 358-367.
    9. Galinsky, Nathan & Sendi, Marwan & Bowers, Lindsay & Li, Fanxing, 2016. "CaMn1−xBxO3−δ (B=Al, V, Fe, Co, and Ni) perovskite based oxygen carriers for chemical looping with oxygen uncoupling (CLOU)," Applied Energy, Elsevier, vol. 174(C), pages 80-87.
    10. Miller, Duane D. & Siriwardane, Ranjani & Poston, James, 2015. "Fluidized-bed and fixed-bed reactor testing of methane chemical looping combustion with MgO-promoted hematite," Applied Energy, Elsevier, vol. 146(C), pages 111-121.
    11. Bayham, Samuel & McGiveron, Omar & Tong, Andrew & Chung, Elena & Kathe, Mandar & Wang, Dawei & Zeng, Liang & Fan, Liang-Shih, 2015. "Parametric and dynamic studies of an iron-based 25-kWth coal direct chemical looping unit using sub-bituminous coal," Applied Energy, Elsevier, vol. 145(C), pages 354-363.
    12. Huang, Zhen & He, Fang & Zhu, Huangqing & Chen, Dezhen & Zhao, Kun & Wei, Guoqiang & Feng, Yipeng & Zheng, Anqing & Zhao, Zengli & Li, Haibin, 2015. "Thermodynamic analysis and thermogravimetric investigation on chemical looping gasification of biomass char under different atmospheres with Fe2O3 oxygen carrier," Applied Energy, Elsevier, vol. 157(C), pages 546-553.
    13. Mendiara, T. & García-Labiano, F. & Abad, A. & Gayán, P. & de Diego, L.F. & Izquierdo, M.T. & Adánez, J., 2018. "Negative CO2 emissions through the use of biofuels in chemical looping technology: A review," Applied Energy, Elsevier, vol. 232(C), pages 657-684.
    14. Chen, Liangyong & Bao, Jinhua & Kong, Liang & Combs, Megan & Nikolic, Heather S. & Fan, Zhen & Liu, Kunlei, 2016. "The direct solid-solid reaction between coal char and iron-based oxygen carrier and its contribution to solid-fueled chemical looping combustion," Applied Energy, Elsevier, vol. 184(C), pages 9-18.
    15. Fan, Yuyang & Tippayawong, Nakorn & Wei, Guoqiang & Huang, Zhen & Zhao, Kun & Jiang, Liqun & Zheng, Anqing & Zhao, Zengli & Li, Haibin, 2020. "Minimizing tar formation whilst enhancing syngas production by integrating biomass torrefaction pretreatment with chemical looping gasification," Applied Energy, Elsevier, vol. 260(C).
    16. Jussi Saari & Petteri Peltola & Katja Kuparinen & Juha Kaikko & Ekaterina Sermyagina & Esa Vakkilainen, 2023. "Novel BECCS implementation integrating chemical looping combustion with oxygen uncoupling and a kraft pulp mill cogeneration plant," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(4), pages 1-26, April.
    17. Li, Fang-zhou & Kang, Jing-xian & Song, Yun-cai & Feng, Jie & Li, Wen-ying, 2020. "Thermodynamic feasibility for molybdenum-based gaseous oxides assisted looping coal gasification and its derived power plant," Energy, Elsevier, vol. 194(C).
    18. Ping Wang & Nicholas Means & Dushyant Shekhawat & David Berry & Mehrdad Massoudi, 2015. "Chemical-Looping Combustion and Gasification of Coals and Oxygen Carrier Development: A Brief Review," Energies, MDPI, vol. 8(10), pages 1-31, September.
    19. Xiang, Dong & Jin, Tong & Lei, Xinru & Liu, Shuai & Jiang, Yong & Dong, Zhongbing & Tao, Quanbao & Cao, Yan, 2018. "The high efficient synthesis of natural gas from a joint-feedstock of coke-oven gas and pulverized coke via a chemical looping combustion scheme," Applied Energy, Elsevier, vol. 212(C), pages 944-954.
    20. Lu, Chunqiang & Li, Kongzhai & Zhu, Xing & Wei, Yonggang & Li, Lei & Zheng, Min & Fan, Bingbing & He, Fang & Wang, Hua, 2020. "Improved activity of magnetite oxygen carrier for chemical looping steam reforming by ultrasonic treatment," Applied Energy, Elsevier, vol. 261(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:157:y:2015:i:c:p:449-461. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.