IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v201y2017icp94-110.html
   My bibliography  Save this article

Kinetic analysis of the interactions between calcium ferrite and coal char for chemical looping gasification applications: Identifying reduction routes and modes of oxygen transfer

Author

Listed:
  • Riley, Jarrett
  • Siriwardane, Ranjani
  • Tian, Hanjing
  • Benincosa, William
  • Poston, James

Abstract

Chemical Looping Gasification (CLG) is an emerging technology that shows promise for efficient coal gasification by eliminating the need for energy intensive gas separations to achieve a non-nitrogen diluted syngas stream. Oxygen from oxygen carriers, such as CaFe2O4, are used for coal gasification in place of conventionally produced gaseous oxygen from cryogenic separation of air. These oxygen carriers are unique for their ability to selectively oxidize coal to form syngas and show limited reactivity with syngas components (H2, CO). This study was carried out to determine the kinetic model representation and parameters associated with the selective oxidation of coal derived char (Wyodak and Illinois #6) with a metal ferrite (CaFe2O4) of which are needed for advancement of the process concept. Using thermogravimetric analysis (TGA) coupled with mass spectrometry, the selective oxygen release from metal ferrite in the presence of char by proximal contact was examined. The application of model fitting approaches was used to describe controlling resistances during oxygen release. A combination of the modified shrinking core model (SCM) with planar oxygen ion diffusion control and reaction order based models were applied for kinetic parameter determination. CaFe2O4 particle size plays a major role in the prevailing mode of oxygen release. Particle sizes on the range of 40–50µm tend to favor first order kinetically controlled regimes independent of geometric and diffusion controls. The probability for oxygen ion diffusion controlling regimes increased when the particle size range of the oxygen carrier was increased up to 350µm. Char type also impacted the prevalence of the controlling regime. Higher ranked chars react in a slower manner, limiting the gradient for oxygen ion release from the oxygen carrier. Activation energies determined for this process range from 120 to 200kJ/mol and oxygen ion diffusion coefficients are on the order of 10−8cm2/s. It is suggested that oxygen ion movement is regulated by lattice diffusion out of partially reduced phases (Ca2Fe2O5) and through reduced outer layers composed of CaO and Fe. The controlled movement of oxygen ions influences the rate of carbon oxidation in the char and therefore the selectivity towards partial oxidation products, which are desirable in CLG applications.

Suggested Citation

  • Riley, Jarrett & Siriwardane, Ranjani & Tian, Hanjing & Benincosa, William & Poston, James, 2017. "Kinetic analysis of the interactions between calcium ferrite and coal char for chemical looping gasification applications: Identifying reduction routes and modes of oxygen transfer," Applied Energy, Elsevier, vol. 201(C), pages 94-110.
  • Handle: RePEc:eee:appene:v:201:y:2017:i:c:p:94-110
    DOI: 10.1016/j.apenergy.2017.05.101
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917306086
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.05.101?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Liangyong & Bao, Jinhua & Kong, Liang & Combs, Megan & Nikolic, Heather S. & Fan, Zhen & Liu, Kunlei, 2016. "The direct solid-solid reaction between coal char and iron-based oxygen carrier and its contribution to solid-fueled chemical looping combustion," Applied Energy, Elsevier, vol. 184(C), pages 9-18.
    2. Siriwardane, Ranjani & Riley, Jarrett & Tian, Hanjing & Richards, George, 2016. "Chemical looping coal gasification with calcium ferrite and barium ferrite via solid–solid reactions," Applied Energy, Elsevier, vol. 165(C), pages 952-966.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Jie & Ma, Liping & Yang, Jing & Liu, Hongpan & Liu, Shengyu & Yang, Yingchun & Mu, Liusen & Wei, Yi & Ao, Ran & Guo, Zhiying & Dai, Quxiu & Wang, Huiming, 2019. "Thermodynamic and kinetic analysis of CuO-CaSO4 oxygen carrier in chemical looping gasification," Energy, Elsevier, vol. 188(C).
    2. Ben-Mansour, R. & Li, H. & Habib, M.A., 2017. "Effects of oxygen carrier mole fraction, velocity distribution on conversion performance using an experimentally validated mathematical model of a CLC fuel reactor," Applied Energy, Elsevier, vol. 208(C), pages 803-819.
    3. Cheng, Long & Wu, Zhiqiang & Zhang, Zhiguo & Guo, Changqing & Ellis, Naoko & Bi, Xiaotao & Paul Watkinson, A. & Grace, John R., 2020. "Tar elimination from biomass gasification syngas with bauxite residue derived catalysts and gasification char," Applied Energy, Elsevier, vol. 258(C).
    4. Miller, Duane D. & Siriwardane, Ranjani, 2018. "CaFe2O4 oxygen carrier characterization during the partial oxidation of coal in the chemical looping gasification application," Applied Energy, Elsevier, vol. 224(C), pages 708-716.
    5. Siriwardane, Ranjani & Riley, Jarrett & Atallah, Chris, 2022. "CO2 utilization potential of a novel calcium ferrite based looping process fueled with coal: Experimental evaluation of various coal feedstocks and thermodynamic integrated process analysis," Applied Energy, Elsevier, vol. 323(C).
    6. Fredrik Hildor & Henrik Leion & Tobias Mattisson, 2022. "Steel Converter Slag as an Oxygen Carrier—Interaction with Sulfur Dioxide," Energies, MDPI, vol. 15(16), pages 1-29, August.
    7. Zeng, Jimin & Xiao, Rui & Zhang, Shuai & Zhang, Huiyan & Zeng, Dewang & Qiu, Yu & Ma, Zhong, 2018. "Identifying iron-based oxygen carrier reduction during biomass chemical looping gasification on a thermogravimetric fixed-bed reactor," Applied Energy, Elsevier, vol. 229(C), pages 404-412.
    8. Zeng, Jimin & Hu, Jiawei & Qiu, Yu & Zhang, Shuai & Zeng, Dewang & Xiao, Rui, 2019. "Multi-function of oxygen carrier for in-situ tar removal in chemical looping gasification: Naphthalene as a model compound," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    9. Cerciello, Francesca & Coppola, Antonio & Lacovig, Paolo & Senneca, Osvalda & Salatino, Piero, 2021. "Characterization of surface-oxides on char under periodically changing oxidation/desorption conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    10. Riley, Jarrett & Siriwardane, Ranjani & Tian, Hanjing & Benincosa, William & Poston, James, 2019. "Particle scale modeling of CuFeAlO4 during reduction with CO in chemical looping applications," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    11. Riley, Jarrett & Siriwardane, Ranjani & Tian, Hanjing & Benincosa, William & Poston, James, 2018. "Experimental and kinetic analysis for particle scale modeling of a CuO-Fe2O3-Al2O3 oxygen carrier during reduction with H2 in chemical looping combustion applications," Applied Energy, Elsevier, vol. 228(C), pages 1515-1530.
    12. Benincosa, William & Siriwardane, Ranjani & Tian, Hanjing & Riley, Jarrett & Poston, James, 2020. "A particle-scale reduction model of copper iron manganese oxide with CO for chemical looping combustion," Applied Energy, Elsevier, vol. 262(C).
    13. Lei, Zhiping & Yan, Jingchong & Fang, Jia & Shui, Hengfu & Ren, Shibiao & Wang, Zhicai & Li, Zhanku & Kong, Ying & Kang, Shigang, 2021. "Catalytic combustion of coke and NO reduction in-situ under the action of Fe, Fe–CaO and Fe–CeO2," Energy, Elsevier, vol. 216(C).
    14. Eunhye Song & Daegi Kim & Cheol-Jin Jeong & Do-Yong Kim, 2019. "A Kinetic Study on Combustible Coastal Debris Pyrolysis via Thermogravimetric Analysis," Energies, MDPI, vol. 12(5), pages 1-10, March.
    15. Tang, Genyang & Gu, Jing & Huang, Zhen & Yuan, Haoran & Chen, Yong, 2022. "Cellulose gasification with Ca–Fe oxygen carrier in chemical-looping process," Energy, Elsevier, vol. 239(PD).
    16. Li, Gang & Lv, Xuewei & Ding, Chengyi & Zhou, Xuangeng & Zhong, Dapeng & Qiu, Guibao, 2020. "Non-isothermal carbothermic reduction kinetics of calcium ferrite and hematite as oxygen carriers for chemical looping gasification applications," Applied Energy, Elsevier, vol. 262(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siriwardane, Ranjani & Riley, Jarrett & Atallah, Chris, 2022. "CO2 utilization potential of a novel calcium ferrite based looping process fueled with coal: Experimental evaluation of various coal feedstocks and thermodynamic integrated process analysis," Applied Energy, Elsevier, vol. 323(C).
    2. Liu, Shuai & Xiang, Dong & Xu, Ying & Sun, Zhe & Cao, Yan, 2017. "Relationship between electronic properties of Fe3O4 substituted by Ca and Ba and their reactivity in chemical looping process: A first-principles study," Applied Energy, Elsevier, vol. 202(C), pages 550-557.
    3. Zeng, Jimin & Xiao, Rui & Zhang, Shuai & Zhang, Huiyan & Zeng, Dewang & Qiu, Yu & Ma, Zhong, 2018. "Identifying iron-based oxygen carrier reduction during biomass chemical looping gasification on a thermogravimetric fixed-bed reactor," Applied Energy, Elsevier, vol. 229(C), pages 404-412.
    4. Sarafraz, M.M. & Jafarian, M. & Arjomandi, M. & Nathan, G.J., 2017. "Potential use of liquid metal oxides for chemical looping gasification: A thermodynamic assessment," Applied Energy, Elsevier, vol. 195(C), pages 702-712.
    5. Zhang, Jinzhi & He, Tao & Wang, Zhiqi & Zhu, Min & Zhang, Ke & Li, Bin & Wu, Jinhu, 2017. "The search of proper oxygen carriers for chemical looping partial oxidation of carbon," Applied Energy, Elsevier, vol. 190(C), pages 1119-1125.
    6. Beatrice Muriungi & Lijun Wang & Abolghasem Shahbazi, 2020. "Comparison of Bimetallic Fe-Cu and Fe-Ca Oxygen Carriers for Biomass Gasification," Energies, MDPI, vol. 13(8), pages 1-11, April.
    7. Li, Gang & Lv, Xuewei & Ding, Chengyi & Zhou, Xuangeng & Zhong, Dapeng & Qiu, Guibao, 2020. "Non-isothermal carbothermic reduction kinetics of calcium ferrite and hematite as oxygen carriers for chemical looping gasification applications," Applied Energy, Elsevier, vol. 262(C).
    8. Tang, Genyang & Gu, Jing & Huang, Zhen & Yuan, Haoran & Chen, Yong, 2022. "Cellulose gasification with Ca–Fe oxygen carrier in chemical-looping process," Energy, Elsevier, vol. 239(PD).
    9. Ming Yang & Da Song & Yang Li & Jinzeng Cao & Guoqiang Wei & Fang He, 2023. "High-Quality Syngas Production by Chemical Looping Gasification of Bituminite Based on NiFe 2 O 4 Oxygen Carrier," Energies, MDPI, vol. 16(8), pages 1-17, April.
    10. Zeng, Jimin & Hu, Jiawei & Qiu, Yu & Zhang, Shuai & Zeng, Dewang & Xiao, Rui, 2019. "Multi-function of oxygen carrier for in-situ tar removal in chemical looping gasification: Naphthalene as a model compound," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    11. Zeng, Jimin & Xiao, Rui & Yuan, Jun, 2021. "High-quality syngas production from biomass driven by chemical looping on a PY-GA coupled reactor," Energy, Elsevier, vol. 214(C).
    12. Luo, Ming & Yi, Yang & Wang, Shuzhong & Wang, Zhuliang & Du, Min & Pan, Jianfeng & Wang, Qian, 2018. "Review of hydrogen production using chemical-looping technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3186-3214.
    13. Cheng, Long & Wu, Zhiqiang & Zhang, Zhiguo & Guo, Changqing & Ellis, Naoko & Bi, Xiaotao & Paul Watkinson, A. & Grace, John R., 2020. "Tar elimination from biomass gasification syngas with bauxite residue derived catalysts and gasification char," Applied Energy, Elsevier, vol. 258(C).
    14. Durmaz, Merve & Dilmaç, Nesibe & Dilmaç, Ömer Faruk, 2020. "Evaluation of performance of copper converter slag as oxygen carrier in chemical-looping combustion (CLC)," Energy, Elsevier, vol. 196(C).
    15. Falko Marx & Paul Dieringer & Jochen Ströhle & Bernd Epple, 2021. "Design of a 1 MW th Pilot Plant for Chemical Looping Gasification of Biogenic Residues," Energies, MDPI, vol. 14(9), pages 1-25, April.
    16. Hsiao Mun Lee & Jiahui Xiong & Xinfei Chen & Haitao Wang & Da Song & Jinlong Xie & Yan Lin & Ya Xiong & Zhen Huang & Hongyu Huang, 2023. "Evaluation of the Reactivity of Hematite Oxygen Carriers Modified Using Alkaline (Earth) Metals and Transition Metals for the Chemical Looping Conversion of Lignite," Energies, MDPI, vol. 16(6), pages 1-16, March.
    17. Miller, Duane D. & Siriwardane, Ranjani, 2018. "CaFe2O4 oxygen carrier characterization during the partial oxidation of coal in the chemical looping gasification application," Applied Energy, Elsevier, vol. 224(C), pages 708-716.
    18. Parascanu, M.M. & Sandoval-Salas, F. & Soreanu, G. & Valverde, J.L. & Sanchez-Silva, L., 2017. "Valorization of Mexican biomasses through pyrolysis, combustion and gasification processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 509-522.
    19. Liu, Guicai & Liao, Yanfen & Wu, Yuting & Ma, Xiaoqian, 2018. "Synthesis gas production from microalgae gasification in the presence of Fe2O3 oxygen carrier and CaO additive," Applied Energy, Elsevier, vol. 212(C), pages 955-965.
    20. Tian, Xin & Zhao, Haibo & Ma, Jinchen, 2017. "Cement bonded fine hematite and copper ore particles as oxygen carrier in chemical looping combustion," Applied Energy, Elsevier, vol. 204(C), pages 242-253.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:201:y:2017:i:c:p:94-110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.