IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v273y2023ics0360544223006461.html
   My bibliography  Save this article

Plasma bubble characteristics and hydrogen production performance of methanol decomposition by liquid phase discharge

Author

Listed:
  • Wu, Tianyi
  • Wang, Junfeng
  • Zhang, Wei
  • Zuo, Lei
  • Xu, Haojie
  • Li, Bin

Abstract

The decomposition of hydrocarbons or alcohols by non-thermal plasma discharge has potential for rapid hydrogen production. Hydrogen production using liquid raw materials is more secure and economical for transportation. In this study, liquid plasma discharge was used to induce methanol decomposition and analyzed factors affecting the decomposition reaction as well as the evolution of the plasma bubble. A liquid plasma discharge reactor was designed for visualization. Liquid-phase discharge and methanol decomposition processes were imaged in detail using a high-speed camera. At the plasma-liquid interface of a bubble substrate, energy is concentrated and methanol is decomposed into gaseous products. The bubbles detach from the tip of the plasma bubble substrate and the decomposition reaction is continuous and stable. Two typical plasma discharge modes were obtained by adjusting the electrode spacing: gliding arc discharge (GAD) and glow discharge (GD). The voltage and current curves of GD approximate the sinusoidal waveform of the alternation current power supply, and the range of discharge power is 130.4–460.2 W. However, GAD has feature of the bipolar pulses with a high transient peak current (420.6–690.9 mA) that causes discharge power of GAD excitation is 30.7–110.3 W. Primary analyzes indicate that the energy consumption of GAD is less than that of the GD due to the difference in discharge characteristics. An optimized energy consumption of 1.63 kWh/Nm3H2 was achieved for hydrogen production. The maximum hydrogen proportion of the gaseous product is 63.21%, which corresponds to a carbon monoxide proportion of 26.38% as the main byproduct. The effects of the discharge power, electrode distance, and electrode diameter on methanol decomposition were analyzed.

Suggested Citation

  • Wu, Tianyi & Wang, Junfeng & Zhang, Wei & Zuo, Lei & Xu, Haojie & Li, Bin, 2023. "Plasma bubble characteristics and hydrogen production performance of methanol decomposition by liquid phase discharge," Energy, Elsevier, vol. 273(C).
  • Handle: RePEc:eee:energy:v:273:y:2023:i:c:s0360544223006461
    DOI: 10.1016/j.energy.2023.127252
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223006461
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127252?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xin, Yanbin & Sun, Bing & Zhu, Xiaomei & Yan, Zhiyu & Liu, Hui & Liu, Yongjun, 2016. "Effects of plate electrode materials on hydrogen production by pulsed discharge in ethanol solution," Applied Energy, Elsevier, vol. 181(C), pages 75-82.
    2. Bellocchi, Sara & Colbertaldo, Paolo & Manno, Michele & Nastasi, Benedetto, 2023. "Assessing the effectiveness of hydrogen pathways: A techno-economic optimisation within an integrated energy system," Energy, Elsevier, vol. 263(PE).
    3. Witkowski, Andrzej & Rusin, Andrzej & Majkut, Mirosław & Stolecka, Katarzyna, 2017. "Comprehensive analysis of hydrogen compression and pipeline transportation from thermodynamics and safety aspects," Energy, Elsevier, vol. 141(C), pages 2508-2518.
    4. Xin, Yanbin & Sun, Bing & Zhu, Xiaomei & Yan, Zhiyu & Sun, Xiaohang, 2021. "Hydrogen-rich syngas production by liquid phase pulsed electrodeless discharge," Energy, Elsevier, vol. 214(C).
    5. Xin, Yanbin & Sun, Bing & Zhu, Xiaomei & Yan, Zhiyu & Zhao, Xiaotong & Sun, Xiaohang, 2017. "Hydrogen production from ethanol decomposition by pulsed discharge with needle-net configurations," Applied Energy, Elsevier, vol. 206(C), pages 126-133.
    6. Niermann, M. & Timmerberg, S. & Drünert, S. & Kaltschmitt, M., 2021. "Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    7. Rahmati, Hamed & Ghorbanzadeh, Atamalek, 2021. "Parallel electrodes gliding plasma: Working principles and application in dry reforming of methane," Energy, Elsevier, vol. 230(C).
    8. Geng, Jinliang & Sun, Heng, 2023. "Optimization and analysis of a hydrogen liquefaction process: Energy, exergy, economic, and uncertainty quantification analysis," Energy, Elsevier, vol. 262(PA).
    9. Vecten, S. & Wilkinson, M. & Martin, A. & Dexter, A. & Bimbo, N. & Dawson, R. & Herbert, B., 2020. "Experimental study of steam and carbon dioxide microwave plasma for advanced thermal treatment application," Energy, Elsevier, vol. 207(C).
    10. Zhang, Haotian & Sun, Zhuxing & Hu, Yun Hang, 2021. "Steam reforming of methane: Current states of catalyst design and process upgrading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    11. Li, Chengjiang & Jia, Tingwen & Wang, Honglei & Wang, Xiaolin & Negnevitsky, Michael & Hu, Yu-jie & Zhao, Gang & Wang, Liang, 2023. "Assessing the prospect of deploying green methanol vehicles in China from energy, environmental and economic perspectives," Energy, Elsevier, vol. 263(PE).
    12. Xin, Yanbin & Sun, Bing & Zhu, Xiaomei & Yan, Zhiyu & Liu, Yongjun & Liu, Hui, 2016. "Characteristics of hydrogen produced by pulsed discharge in ethanol solution," Applied Energy, Elsevier, vol. 168(C), pages 122-129.
    13. Fan, Jing-Li & Yu, Pengwei & Li, Kai & Xu, Mao & Zhang, Xian, 2022. "A levelized cost of hydrogen (LCOH) comparison of coal-to-hydrogen with CCS and water electrolysis powered by renewable energy in China," Energy, Elsevier, vol. 242(C).
    14. Xin, Yanbin & Wang, Quanli & Sun, Jiabao & Sun, Bing, 2022. "Plasma in aqueous methanol: Influence of plasma initiation mechanism on hydrogen production," Applied Energy, Elsevier, vol. 325(C).
    15. Ulejczyk, Bogdan & Nogal, Łukasz & Młotek, Michał & Krawczyk, Krzysztof, 2019. "Hydrogen production from ethanol using dielectric barrier discharge," Energy, Elsevier, vol. 174(C), pages 261-268.
    16. Sanya Carley & David M. Konisky, 2020. "The justice and equity implications of the clean energy transition," Nature Energy, Nature, vol. 5(8), pages 569-577, August.
    17. Sanghoo Park & Wonho Choe & Hyungyu Lee & Joo Young Park & Jinwoo Kim & Se Youn Moon & Uroš Cvelbar, 2021. "Stabilization of liquid instabilities with ionized gas jets," Nature, Nature, vol. 592(7852), pages 49-53, April.
    18. George, Adwek & Shen, Boxiong & Craven, Michael & Wang, Yaolin & Kang, Dongrui & Wu, Chunfei & Tu, Xin, 2021. "A Review of Non-Thermal Plasma Technology: A novel solution for CO2 conversion and utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Qiuying & Sun, Shaohua & Yang, Yutong & Zhu, Xiaomei & Sun, Bing, 2024. "Efficient conversion of methane in aqueous solution assisted by microwave plasma technology with a novel electrode," Energy, Elsevier, vol. 289(C).
    2. Qiu, Guoyi & Zhu, Shaolong & Wang, Kai & Wang, Weibo & Hu, Junhui & Hu, Yun & Zhi, Xiaoqin & Qiu, Limin, 2023. "Numerical study on the dynamic process of reciprocating liquid hydrogen pumps for hydrogen refueling stations," Energy, Elsevier, vol. 281(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xin, Yanbin & Wang, Quanli & Sun, Jiabao & Sun, Bing, 2022. "Plasma in aqueous methanol: Influence of plasma initiation mechanism on hydrogen production," Applied Energy, Elsevier, vol. 325(C).
    2. Xin, Yanbin & Sun, Bing & Zhu, Xiaomei & Yan, Zhiyu & Sun, Xiaohang, 2021. "Hydrogen-rich syngas production by liquid phase pulsed electrodeless discharge," Energy, Elsevier, vol. 214(C).
    3. Wang, Qiuying & Zhu, Xiaomei & Sun, Bing & Li, Zhi & Liu, Jinglin, 2022. "Hydrogen production from methane via liquid phase microwave plasma: A deoxidation strategy," Applied Energy, Elsevier, vol. 328(C).
    4. Xin, Yanbin & Sun, Bing & Liu, Jingyu & Wang, Quanli & Zhu, Xiaomei & Yan, Zhiyu, 2021. "Effects of electrode configurations, solution pH, TiO2 addition on hydrogen production by in-liquid discharge plasma," Renewable Energy, Elsevier, vol. 171(C), pages 728-734.
    5. Gao, Yuan & Zhang, Shuai & Sun, Hao & Wang, Ruixue & Tu, Xin & Shao, Tao, 2018. "Highly efficient conversion of methane using microsecond and nanosecond pulsed spark discharges," Applied Energy, Elsevier, vol. 226(C), pages 534-545.
    6. Li, Zezheng & Yu, Pengwei & Xian, Yujiao & Fan, Jing-Li, 2024. "Investment benefit analysis of coal-to-hydrogen coupled CCS technology in China based on real option approach," Energy, Elsevier, vol. 294(C).
    7. Bogdan Ulejczyk & Paweł Jóźwik & Łukasz Nogal & Michał Młotek & Krzysztof Krawczyk, 2022. "Efficient Conversion of Ethanol to Hydrogen in a Hybrid Plasma-Catalytic Reactor," Energies, MDPI, vol. 15(9), pages 1-11, April.
    8. Bogdan Ulejczyk & Łukasz Nogal & Michał Młotek & Krzysztof Krawczyk, 2022. "Efficient Plasma Technology for the Production of Green Hydrogen from Ethanol and Water," Energies, MDPI, vol. 15(8), pages 1-14, April.
    9. Xin, Yanbin & Sun, Bing & Zhu, Xiaomei & Yan, Zhiyu & Zhao, Xiaotong & Sun, Xiaohang, 2017. "Hydrogen production from ethanol decomposition by pulsed discharge with needle-net configurations," Applied Energy, Elsevier, vol. 206(C), pages 126-133.
    10. Zhao, Xiaotong & Sun, Bing & Zhu, Tonghui & Zhu, Xiaomei & Yan, Zhiyu & Xin, Yanbin & Sun, Xiaohang, 2020. "Pathways of hydrogen-rich gas produced by microwave discharge in ethanol-water mixtures," Renewable Energy, Elsevier, vol. 156(C), pages 768-776.
    11. Wu, Angjian & Li, Xiaodong & Yan, Jianhua & Yang, Jian & Du, Changming & Zhu, Fengsen & Qian, Jinyuan, 2017. "Co-generation of hydrogen and carbon aerosol from coalbed methane surrogate using rotating gliding arc plasma," Applied Energy, Elsevier, vol. 195(C), pages 67-79.
    12. Wang, Xiaoling & Gao, Yuan & Zhang, Shuai & Sun, Hao & Li, Jie & Shao, Tao, 2019. "Nanosecond pulsed plasma assisted dry reforming of CH4: The effect of plasma operating parameters," Applied Energy, Elsevier, vol. 243(C), pages 132-144.
    13. Henryka Danuta Stryczewska & Mariusz Adam Stępień & Oleksandr Boiko, 2022. "Plasma and Superconductivity for the Sustainable Development of Energy and the Environment," Energies, MDPI, vol. 15(11), pages 1-30, June.
    14. Chen, Xiaoyuan & Pang, Zhou & Jiang, Shan & Zhang, Mingshun & Feng, Juan & Fu, Lin & Shen, Boyang, 2023. "A novel LH2/GH2/battery multi-energy vehicle supply station using 100% local wind energy: Technical, economic and environmental perspectives," Energy, Elsevier, vol. 270(C).
    15. Tice, Julianne & Batterbury, Simon PJ, 2023. "Who Accesses Solar PV? Energy Justice and Climate Justice in a Local Government Rooftop Solar Programme," Ecology, Economy and Society - the INSEE Journal, Indian Society of Ecological Economics (INSEE), vol. 6(02), July.
    16. Hu, Xueyue & Wang, Chunying & Elshkaki, Ayman, 2024. "Material-energy Nexus: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    17. Sun, J. & Wen, W. & Wang, M. & Zhou, P., 2022. "Optimizing the provincial target allocation scheme of renewable portfolio standards in China," Energy, Elsevier, vol. 250(C).
    18. Upham, Dr Paul & Sovacool, Prof Benjamin & Ghosh, Dr Bipashyee, 2022. "Just transitions for industrial decarbonisation: A framework for innovation, participation, and justice," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    19. Łukasz Jarosław Kozar & Robert Matusiak & Marta Paduszyńska & Adam Sulich, 2022. "Green Jobs in the EU Renewable Energy Sector: Quantile Regression Approach," Energies, MDPI, vol. 15(18), pages 1-21, September.
    20. Liu, Jianing & Wen, Xiao & Jian, Sisi, 2024. "Toward better equity: Analyzing travel patterns through a neural network approach in mobility-as-a-service," Transport Policy, Elsevier, vol. 153(C), pages 110-126.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:273:y:2023:i:c:s0360544223006461. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.