IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i8p2777-d790671.html
   My bibliography  Save this article

Efficient Plasma Technology for the Production of Green Hydrogen from Ethanol and Water

Author

Listed:
  • Bogdan Ulejczyk

    (Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland)

  • Łukasz Nogal

    (Faculty of Electrical Engineering, Warsaw University of Technology, Pl. Politechniki 1, 00-661 Warsaw, Poland)

  • Michał Młotek

    (Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland)

  • Krzysztof Krawczyk

    (Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland)

Abstract

This study concerns the production of hydrogen from a mixture of ethanol and water. The process was conducted in plasma generated by a spark discharge. The substrates were introduced in the liquid phase into the reactor. The gaseous products formed in the spark reactor were hydrogen, carbon monoxide, carbon dioxide, methane, acetylene, and ethylene. Coke was also produced. The energy efficiency of hydrogen production was 27 mol(H 2 )/kWh, and it was 36% of the theoretical energy efficiency. The high value of the energy efficiency of hydrogen production was obtained with relatively high ethanol conversion (63%). In the spark discharge, it was possible to conduct the process under conditions in which the ethanol conversion reached 95%. However, this entailed higher energy consumption and reduced the energy efficiency of hydrogen production to 8.8 mol(H 2 )/kWh. Hydrogen production increased with increasing discharge power and feed stream. However, the hydrogen concentration was very high under all tested conditions and ranged from 57.5 to 61.5%. This means that the spark reactor is a device that can feed fuel cells, the power load of which can fluctuate.

Suggested Citation

  • Bogdan Ulejczyk & Łukasz Nogal & Michał Młotek & Krzysztof Krawczyk, 2022. "Efficient Plasma Technology for the Production of Green Hydrogen from Ethanol and Water," Energies, MDPI, vol. 15(8), pages 1-14, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2777-:d:790671
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/8/2777/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/8/2777/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ekaterina Matus & Olga Sukhova & Ilyas Ismagilov & Mikhail Kerzhentsev & Olga Stonkus & Zinfer Ismagilov, 2021. "Hydrogen Production through Autothermal Reforming of Ethanol: Enhancement of Ni Catalyst Performance via Promotion," Energies, MDPI, vol. 14(16), pages 1-16, August.
    2. Vincenzo Palma & Concetta Ruocco & Eugenio Meloni & Antonio Ricca, 2017. "Influence of Catalytic Formulation and Operative Conditions on Coke Deposition over CeO 2 -SiO 2 Based Catalysts for Ethanol Reforming," Energies, MDPI, vol. 10(7), pages 1-13, July.
    3. Lifita N. Tande & Erik Resendiz-Mora & Valerie Dupont, 2021. "Bioh 2 , Heat and Power from Palm Empty Fruit Bunch via Pyrolysis-Autothermal Reforming: Plant Simulation, Experiments, and CO 2 Mitigation," Energies, MDPI, vol. 14(16), pages 1-25, August.
    4. Xin, Yanbin & Sun, Bing & Zhu, Xiaomei & Yan, Zhiyu & Zhao, Xiaotong & Sun, Xiaohang, 2017. "Hydrogen production from ethanol decomposition by pulsed discharge with needle-net configurations," Applied Energy, Elsevier, vol. 206(C), pages 126-133.
    5. Ulejczyk, Bogdan & Nogal, Łukasz & Młotek, Michał & Krawczyk, Krzysztof, 2019. "Hydrogen production from ethanol using dielectric barrier discharge," Energy, Elsevier, vol. 174(C), pages 261-268.
    6. Kierzkowska-Pawlak, Hanna & Tyczkowski, Jacek & Jarota, Arkadiusz & Abramczyk, Halina, 2019. "Hydrogen production in liquid water by femtosecond laser-induced plasma," Applied Energy, Elsevier, vol. 247(C), pages 24-31.
    7. Ha Jin Kim & Young Nam Chun, 2020. "Conversion of Biogas to Renewable Energy by Microwave Reforming," Energies, MDPI, vol. 13(16), pages 1-11, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bogdan Ulejczyk & Paweł Jóźwik & Łukasz Nogal & Michał Młotek & Krzysztof Krawczyk, 2022. "Efficient Conversion of Ethanol to Hydrogen in a Hybrid Plasma-Catalytic Reactor," Energies, MDPI, vol. 15(9), pages 1-11, April.
    2. Mustafa Jaradat & Omar Alsotary & Adel Juaidi & Aiman Albatayneh & Asem Alzoubi & Shiva Gorjian, 2022. "Potential of Producing Green Hydrogen in Jordan," Energies, MDPI, vol. 15(23), pages 1-21, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Tianyi & Wang, Junfeng & Zhang, Wei & Zuo, Lei & Xu, Haojie & Li, Bin, 2023. "Plasma bubble characteristics and hydrogen production performance of methanol decomposition by liquid phase discharge," Energy, Elsevier, vol. 273(C).
    2. Eugenio Meloni & Marco Martino & Giuseppina Iervolino & Concetta Ruocco & Simona Renda & Giovanni Festa & Vincenzo Palma, 2022. "The Route from Green H 2 Production through Bioethanol Reforming to CO 2 Catalytic Conversion: A Review," Energies, MDPI, vol. 15(7), pages 1-36, March.
    3. Xin, Yanbin & Wang, Quanli & Sun, Jiabao & Sun, Bing, 2022. "Plasma in aqueous methanol: Influence of plasma initiation mechanism on hydrogen production," Applied Energy, Elsevier, vol. 325(C).
    4. Xin, Yanbin & Sun, Bing & Zhu, Xiaomei & Yan, Zhiyu & Sun, Xiaohang, 2021. "Hydrogen-rich syngas production by liquid phase pulsed electrodeless discharge," Energy, Elsevier, vol. 214(C).
    5. Ratikorn Sornumpol & Dang Saebea & Amornchai Arpornwichanop & Yaneeporn Patcharavorachot, 2023. "Process Optimization and CO 2 Emission Analysis of Coal/Biomass Gasification Integrated with a Chemical Looping Process," Energies, MDPI, vol. 16(6), pages 1-17, March.
    6. Wu, Zuliang & Zhou, Weili & Hao, Xiaodong & Zhang, Xuming, 2019. "Plasma reforming of n-pentane as a simulated gasoline to hydrogen and cleaner carbon-based fuels," Energy, Elsevier, vol. 189(C).
    7. Guoqiang Wang & Feng Wang & Delun Guan, 2022. "A Study of Thermoelectric Generation Coupled with Methanol Steam Reforming for Hydrogen Production," Energies, MDPI, vol. 15(21), pages 1-11, November.
    8. Vladislav Sadykov, 2023. "Advances in Hydrogen and Syngas Generation," Energies, MDPI, vol. 16(7), pages 1-4, March.
    9. Ruocco, Concetta & Palma, Vincenzo & Cortese, Marta & Martino, Marco, 2022. "Stability of bimetallic Ni/CeO2–SiO2 catalysts during fuel grade bioethanol reforming in a fluidized bed reactor," Renewable Energy, Elsevier, vol. 182(C), pages 913-922.
    10. Bogdan Ulejczyk & Paweł Jóźwik & Łukasz Nogal & Michał Młotek & Krzysztof Krawczyk, 2022. "Efficient Conversion of Ethanol to Hydrogen in a Hybrid Plasma-Catalytic Reactor," Energies, MDPI, vol. 15(9), pages 1-11, April.
    11. Wang, Qiuying & Zhu, Xiaomei & Sun, Bing & Li, Zhi & Liu, Jinglin, 2022. "Hydrogen production from methane via liquid phase microwave plasma: A deoxidation strategy," Applied Energy, Elsevier, vol. 328(C).
    12. Mattia Boscherini & Alba Storione & Matteo Minelli & Francesco Miccio & Ferruccio Doghieri, 2023. "New Perspectives on Catalytic Hydrogen Production by the Reforming, Partial Oxidation and Decomposition of Methane and Biogas," Energies, MDPI, vol. 16(17), pages 1-33, September.
    13. Ekaterina Matus & Mikhail Kerzhentsev & Ilyas Ismagilov & Andrey Nikitin & Sergey Sozinov & Zinfer Ismagilov, 2023. "Hydrogen Production from Biogas: Development of an Efficient Nickel Catalyst by the Exsolution Approach," Energies, MDPI, vol. 16(7), pages 1-21, March.
    14. Xin, Yanbin & Sun, Bing & Liu, Jingyu & Wang, Quanli & Zhu, Xiaomei & Yan, Zhiyu, 2021. "Effects of electrode configurations, solution pH, TiO2 addition on hydrogen production by in-liquid discharge plasma," Renewable Energy, Elsevier, vol. 171(C), pages 728-734.
    15. Deng, Yimin & Li, Shuo & Appels, Lise & Zhang, Huili & Sweygers, Nick & Baeyens, Jan & Dewil, Raf, 2023. "Steam reforming of ethanol by non-noble metal catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    16. Wang, Xiaoling & Gao, Yuan & Zhang, Shuai & Sun, Hao & Li, Jie & Shao, Tao, 2019. "Nanosecond pulsed plasma assisted dry reforming of CH4: The effect of plasma operating parameters," Applied Energy, Elsevier, vol. 243(C), pages 132-144.
    17. Henryka Danuta Stryczewska & Mariusz Adam Stępień & Oleksandr Boiko, 2022. "Plasma and Superconductivity for the Sustainable Development of Energy and the Environment," Energies, MDPI, vol. 15(11), pages 1-30, June.
    18. Minbeom Lee & Yikyeom Kim & Hyun Suk Lim & Ayeong Jo & Dohyung Kang & Jae W. Lee, 2020. "Reverse Water–Gas Shift Chemical Looping Using a Core–Shell Structured Perovskite Oxygen Carrier," Energies, MDPI, vol. 13(20), pages 1-12, October.
    19. Rincón, R. & Muñoz, J. & Morales-Calero, F.J. & Orejas, J. & Calzada, M.D., 2021. "Assessment of two atmospheric-pressure microwave plasma sources for H2 production from ethanol decomposition," Applied Energy, Elsevier, vol. 294(C).
    20. Gao, Yuan & Zhang, Shuai & Sun, Hao & Wang, Ruixue & Tu, Xin & Shao, Tao, 2018. "Highly efficient conversion of methane using microsecond and nanosecond pulsed spark discharges," Applied Energy, Elsevier, vol. 226(C), pages 534-545.

    More about this item

    Keywords

    reforming; plasma; discharge;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2777-:d:790671. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.