Application of a novel microwave-assisted plasma ignition system in a direct injection gasoline engine
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2017.07.129
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Galloni, E. & Fontana, G. & Palmaccio, R., 2013. "Effects of exhaust gas recycle in a downsized gasoline engine," Applied Energy, Elsevier, vol. 105(C), pages 99-107.
- Mariani, Antonio & Foucher, Fabrice, 2014. "Radio frequency spark plug: An ignition system for modern internal combustion engines," Applied Energy, Elsevier, vol. 122(C), pages 151-161.
- Fontana, G. & Galloni, E., 2010. "Experimental analysis of a spark-ignition engine using exhaust gas recycle at WOT operation," Applied Energy, Elsevier, vol. 87(7), pages 2187-2193, July.
- Wei, Haiqiao & Zhu, Tianyu & Shu, Gequn & Tan, Linlin & Wang, Yuesen, 2012. "Gasoline engine exhaust gas recirculation – A review," Applied Energy, Elsevier, vol. 99(C), pages 534-544.
- Sun, Jing & Wang, Wenlong & Yue, Qinyan & Ma, Chunyuan & Zhang, Junsong & Zhao, Xiqiang & Song, Zhanlong, 2016. "Review on microwave–metal discharges and their applications in energy and industrial processes," Applied Energy, Elsevier, vol. 175(C), pages 141-157.
- Salvi, B.L. & Subramanian, K.A., 2015. "Experimental investigation and phenomenological model development of flame kernel growth rate in a gasoline fuelled spark ignition engine," Applied Energy, Elsevier, vol. 139(C), pages 93-103.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Singh, Awanish Pratap & Padhi, Upasana P. & Joarder, Ratan & Roy, Arnab, 2019. "Spatio-temporal effect of the breakdown zone in the laser-initiated ignition of atomized ethyl alcohol-air mixture," Applied Energy, Elsevier, vol. 247(C), pages 140-154.
- Wang, Xiaoling & Gao, Yuan & Zhang, Shuai & Sun, Hao & Li, Jie & Shao, Tao, 2019. "Nanosecond pulsed plasma assisted dry reforming of CH4: The effect of plasma operating parameters," Applied Energy, Elsevier, vol. 243(C), pages 132-144.
- Akram, M. Zuhaib, 2021. "Study of hydrogen impact on lean flammability limit and burning characteristics of a kerosene surrogate," Energy, Elsevier, vol. 231(C).
- Ming-Hsien Hsueh & Chao-Jung Lai & Meng-Chang Hsieh & Shi-Hao Wang & Chia-Hsin Hsieh & Chieh-Yu Pan & Wen-Chen Huang, 2021. "Effect of Water Vapor Injection on the Performance and Emissions Characteristics of a Spark-Ignition Engine," Sustainability, MDPI, vol. 13(16), pages 1-22, August.
- Cai, Zun & Zhu, Jiajian & Sun, Mingbo & Wang, Zhenguo & Bai, Xue-Song, 2018. "Ignition processes and modes excited by laser-induced plasma in a cavity-based supersonic combustor," Applied Energy, Elsevier, vol. 228(C), pages 1777-1782.
- Discepoli, G. & Cruccolini, V. & Ricci, F. & Di Giuseppe, A. & Papi, S. & Grimaldi, C.N., 2020. "Experimental characterisation of the thermal energy released by a Radio-Frequency Corona Igniter in nitrogen and air," Applied Energy, Elsevier, vol. 263(C).
- Yong Hyun Choi & Joonsik Hwang, 2023. "Review on Plasma-Assisted Ignition Systems for Internal Combustion Engine Application," Energies, MDPI, vol. 16(4), pages 1-25, February.
- Fei Ma & Lingyan Guo & Zhijie Li & Xiaoxiao Zeng & Zhencao Zheng & Wei Li & Feiyang Zhao & Wenbin Yu, 2023. "A Review of Current Advances in Ammonia Combustion from the Fundamentals to Applications in Internal Combustion Engines," Energies, MDPI, vol. 16(17), pages 1-20, August.
- Tsuboi, Seima & Miyokawa, Shinji & Matsuda, Masayoshi & Yokomori, Takeshi & Iida, Norimasa, 2019. "Influence of spark discharge characteristics on ignition and combustion process and the lean operation limit in a spark ignition engine," Applied Energy, Elsevier, vol. 250(C), pages 617-632.
- Gong, Changming & Yi, Lin & Wang, Kang & Huang, Kuo & Liu, Fenghua, 2020. "Numerical study on electron energy distribution characteristics and evolution of active particles of methanol-air mixture by non-equilibrium plasma," Energy, Elsevier, vol. 193(C).
- Miao, Junjie & Fan, Yuxin & Wu, Weiqiu & Zhao, Shilong, 2021. "Effect of air-assistant on ignition and flame-holding characteristics in a cavity-strut based combustor," Applied Energy, Elsevier, vol. 283(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jung, Dongwon & Sasaki, Kosaku & Iida, Norimasa, 2017. "Effects of increased spark discharge energy and enhanced in-cylinder turbulence level on lean limits and cycle-to-cycle variations of combustion for SI engine operation," Applied Energy, Elsevier, vol. 205(C), pages 1467-1477.
- Demesoukas, Sokratis & Brequigny, Pierre & Caillol, Christian & Halter, Fabien & Mounaïm-Rousselle, Christine, 2016. "0D modeling aspects of flame stretch in spark ignition engines and comparison with experimental results," Applied Energy, Elsevier, vol. 179(C), pages 401-412.
- Andwari, Amin Mahmoudzadeh & Aziz, Azhar Abdul & Said, Mohd Farid Muhamad & Latiff, Zulkarnain Abdul, 2014. "Experimental investigation of the influence of internal and external EGR on the combustion characteristics of a controlled auto-ignition two-stroke cycle engine," Applied Energy, Elsevier, vol. 134(C), pages 1-10.
- Discepoli, G. & Cruccolini, V. & Ricci, F. & Di Giuseppe, A. & Papi, S. & Grimaldi, C.N., 2020. "Experimental characterisation of the thermal energy released by a Radio-Frequency Corona Igniter in nitrogen and air," Applied Energy, Elsevier, vol. 263(C).
- Mariani, Antonio & Foucher, Fabrice, 2014. "Radio frequency spark plug: An ignition system for modern internal combustion engines," Applied Energy, Elsevier, vol. 122(C), pages 151-161.
- Lattimore, Thomas & Wang, Chongming & Xu, Hongming & Wyszynski, Miroslaw L. & Shuai, Shijin, 2016. "Investigation of EGR Effect on Combustion and PM Emissions in a DISI Engine," Applied Energy, Elsevier, vol. 161(C), pages 256-267.
- Zhao, Jinxing, 2017. "Research and application of over-expansion cycle (Atkinson and Miller) engines – A review," Applied Energy, Elsevier, vol. 185(P1), pages 300-319.
- Tehseen Johar & Chiu-Fan Hsieh, 2023. "Design Challenges in Hydrogen-Fueled Rotary Engine—A Review," Energies, MDPI, vol. 16(2), pages 1-22, January.
- Benajes, J. & Novella, R. & Gomez-Soriano, J. & Martinez-Hernandiz, P.J. & Libert, C. & Dabiri, M., 2019. "Evaluation of the passive pre-chamber ignition concept for future high compression ratio turbocharged spark-ignition engines," Applied Energy, Elsevier, vol. 248(C), pages 576-588.
- Kim, Keunsoo & Kim, Junghwan & Oh, Seungmook & Kim, Changup & Lee, Yonggyu, 2017. "Evaluation of injection and ignition schemes for the ultra-lean combustion direct-injection LPG engine to control particulate emissions," Applied Energy, Elsevier, vol. 194(C), pages 123-135.
- Zhang, Zhijin & Zhang, Haiyan & Wang, Tianyou & Jia, Ming, 2014. "Effects of tumble combined with EGR (exhaust gas recirculation) on the combustion and emissions in a spark ignition engine at part loads," Energy, Elsevier, vol. 65(C), pages 18-24.
- Meng, Hao & Ji, Changwei & Shen, Jianpu & Yang, Jinxin & Xin, Gu & Chang, Ke & Wang, Shuofeng, 2023. "Analysis of combustion characteristics under cooled EGR in the hydrogen-fueled Wankel rotary engine," Energy, Elsevier, vol. 263(PB).
- Ghaderi Masouleh, M. & Keskinen, K. & Kaario, O. & Kahila, H. & Wright, Y.M. & Vuorinen, V., 2018. "Flow and thermal field effects on cycle-to-cycle variation of combustion: scale-resolving simulation in a spark ignited simplified engine configuration," Applied Energy, Elsevier, vol. 230(C), pages 486-505.
- Wang, Shuofeng & Ji, Changwei & Zhang, Bo & Liu, Xiaolong, 2014. "Lean burn performance of a hydrogen-blended gasoline engine at the wide open throttle condition," Applied Energy, Elsevier, vol. 136(C), pages 43-50.
- Bermúdez, Vicente & Luján, José Manuel & Climent, Héctor & Campos, Daniel, 2015. "Assessment of pollutants emission and aftertreatment efficiency in a GTDi engine including cooled LP-EGR system under different steady-state operating conditions," Applied Energy, Elsevier, vol. 158(C), pages 459-473.
- Rami Y. Dahham & Haiqiao Wei & Jiaying Pan, 2022. "Improving Thermal Efficiency of Internal Combustion Engines: Recent Progress and Remaining Challenges," Energies, MDPI, vol. 15(17), pages 1-60, August.
- Han, Xiaoye & Yu, Shui & Tjong, Jimi & Zheng, Ming, 2020. "Study of an innovative three-pole igniter to improve efficiency and stability of gasoline combustion under charge dilution conditions," Applied Energy, Elsevier, vol. 257(C).
- Jung, Dongwon & Lee, Sejun, 2018. "An investigation on the potential of dedicated exhaust gas recirculation for improving thermal efficiency of stoichiometric and lean spark ignition engine operation," Applied Energy, Elsevier, vol. 228(C), pages 1754-1766.
- Irimescu, Adrian & Merola, Simona Silvia & Valentino, Gerardo, 2016. "Application of an entrainment turbulent combustion model with validation based on the distribution of chemical species in an optical spark ignition engine," Applied Energy, Elsevier, vol. 162(C), pages 908-923.
- Xu, Zidan & Zhang, Yahui & Di, Huanyu & Shen, Tielong, 2019. "Combustion variation control strategy with thermal efficiency optimization for lean combustion in spark-ignition engines," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
More about this item
Keywords
Microwave; Non-thermal plasma; Ignition; Flame kernel; Spark ignition engine; Constant volume combustion chamber;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:205:y:2017:i:c:p:562-576. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.