IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v185y2017ip1p300-319.html
   My bibliography  Save this article

Research and application of over-expansion cycle (Atkinson and Miller) engines – A review

Author

Listed:
  • Zhao, Jinxing

Abstract

Vehicle electrification has to be addressed to reduce dependence on fossil fuels and meet future emission regulations. Pure electric vehicles still have many limitations, but hybrid vehicles are the optimum transference scheme. An over-expansion cycle (Atkinson or Miller) engine is the most suitable for hybrid vehicles. Compared with a conventional Otto cycle engine, an over-expansion cycle engine can realize a larger expansion ratio and thus, a higher thermal efficiency while maintaining a normal effective compression ratio to avoid the knock.

Suggested Citation

  • Zhao, Jinxing, 2017. "Research and application of over-expansion cycle (Atkinson and Miller) engines – A review," Applied Energy, Elsevier, vol. 185(P1), pages 300-319.
  • Handle: RePEc:eee:appene:v:185:y:2017:i:p1:p:300-319
    DOI: 10.1016/j.apenergy.2016.10.063
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916315069
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.10.063?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wei, Haiqiao & Zhu, Tianyu & Shu, Gequn & Tan, Linlin & Wang, Yuesen, 2012. "Gasoline engine exhaust gas recirculation – A review," Applied Energy, Elsevier, vol. 99(C), pages 534-544.
    2. Imperato, Matteo & Kaario, Ossi & Sarjovaara, Teemu & Larmi, Martti, 2016. "Split fuel injection and Miller cycle in a large-bore engine," Applied Energy, Elsevier, vol. 162(C), pages 289-297.
    3. Fontana, G. & Galloni, E., 2009. "Variable valve timing for fuel economy improvement in a small spark-ignition engine," Applied Energy, Elsevier, vol. 86(1), pages 96-105, January.
    4. Hidrue, Michael K. & Parsons, George R., 2015. "Is there a near-term market for vehicle-to-grid electric vehicles?," Applied Energy, Elsevier, vol. 151(C), pages 67-76.
    5. Galloni, E. & Fontana, G. & Palmaccio, R., 2013. "Effects of exhaust gas recycle in a downsized gasoline engine," Applied Energy, Elsevier, vol. 105(C), pages 99-107.
    6. Gonca, Guven & Sahin, Bahri & Parlak, Adnan & Ust, Yasin & Ayhan, Vezir & Cesur, İdris & Boru, Barış, 2014. "The effects of steam injection on the performance and emission parameters of a Miller cycle diesel engine," Energy, Elsevier, vol. 78(C), pages 266-275.
    7. Zhao, Jinxing & Xu, Min, 2013. "Fuel economy optimization of an Atkinson cycle engine using genetic algorithm," Applied Energy, Elsevier, vol. 105(C), pages 335-348.
    8. Donateo, T. & Licci, F. & D’Elia, A. & Colangelo, G. & Laforgia, D. & Ciancarelli, F., 2015. "Evaluation of emissions of CO2 and air pollutants from electric vehicles in Italian cities," Applied Energy, Elsevier, vol. 157(C), pages 675-687.
    9. Fontana, G. & Galloni, E., 2010. "Experimental analysis of a spark-ignition engine using exhaust gas recycle at WOT operation," Applied Energy, Elsevier, vol. 87(7), pages 2187-2193, July.
    10. Zhang, Zutao & Zhang, Xingtian & Chen, Weiwu & Rasim, Yagubov & Salman, Waleed & Pan, Hongye & Yuan, Yanping & Wang, Chunbai, 2016. "A high-efficiency energy regenerative shock absorber using supercapacitors for renewable energy applications in range extended electric vehicle," Applied Energy, Elsevier, vol. 178(C), pages 177-188.
    11. De Bellis, Vincenzo, 2016. "Performance optimization of a spark-ignition turbocharged VVA engine under knock limited operation," Applied Energy, Elsevier, vol. 164(C), pages 162-174.
    12. Fontaras, Georgios & Samaras, Zissis, 2010. "On the way to 130 g CO2/km--Estimating the future characteristics of the average European passenger car," Energy Policy, Elsevier, vol. 38(4), pages 1826-1833, April.
    13. Bozza, Fabio & De Bellis, Vincenzo & Teodosio, Luigi, 2016. "Potentials of cooled EGR and water injection for knock resistance and fuel consumption improvements of gasoline engines," Applied Energy, Elsevier, vol. 169(C), pages 112-125.
    14. Taylor, Alex M.K.P., 2008. "Science review of internal combustion engines," Energy Policy, Elsevier, vol. 36(12), pages 4657-4667, December.
    15. Li, Ying & Davis, Chris & Lukszo, Zofia & Weijnen, Margot, 2016. "Electric vehicle charging in China’s power system: Energy, economic and environmental trade-offs and policy implications," Applied Energy, Elsevier, vol. 173(C), pages 535-554.
    16. Benajes, Jesús & Molina, Santiago & Novella, Ricardo & Belarte, Eduardo, 2014. "Evaluation of massive exhaust gas recirculation and Miller cycle strategies for mixing-controlled low temperature combustion in a heavy duty diesel engine," Energy, Elsevier, vol. 71(C), pages 355-366.
    17. Gonca, Guven & Sahin, Bahri & Parlak, Adnan & Ust, Yasin & Ayhan, Vezir & Cesur, İdris & Boru, Barış, 2015. "Theoretical and experimental investigation of the Miller cycle diesel engine in terms of performance and emission parameters," Applied Energy, Elsevier, vol. 138(C), pages 11-20.
    18. Millo, Federico & Rolando, Luciano & Fuso, Rocco & Mallamo, Fabio, 2014. "Real CO2 emissions benefits and end user’s operating costs of a plug-in Hybrid Electric Vehicle," Applied Energy, Elsevier, vol. 114(C), pages 563-571.
    19. Zamboni, Giorgio & Moggia, Simone & Capobianco, Massimo, 2016. "Hybrid EGR and turbocharging systems control for low NOX and fuel consumption in an automotive diesel engine," Applied Energy, Elsevier, vol. 165(C), pages 839-848.
    20. Guo, Jiadong & Ge, Yunshan & Hao, Lijun & Tan, Jianwei & Peng, Zihang & Zhang, Chuanzhen, 2015. "Comparison of real-world fuel economy and emissions from parallel hybrid and conventional diesel buses fitted with selective catalytic reduction systems," Applied Energy, Elsevier, vol. 159(C), pages 433-441.
    21. Park, Su Han & Yoon, Seung Hyun, 2015. "Injection strategy for simultaneous reduction of NOx and soot emissions using two-stage injection in DME fueled engine," Applied Energy, Elsevier, vol. 143(C), pages 262-270.
    22. Berggren, Christian & Magnusson, Thomas, 2012. "Reducing automotive emissions—The potentials of combustion engine technologies and the power of policy," Energy Policy, Elsevier, vol. 41(C), pages 636-643.
    23. Zhao, Jinxing & Xu, Min & Li, Mian & Wang, Bin & Liu, Shuangzhai, 2012. "Design and optimization of an Atkinson cycle engine with the Artificial Neural Network Method," Applied Energy, Elsevier, vol. 92(C), pages 492-502.
    24. Zhen, Xudong & Wang, Yang & Xu, Shuaiqing & Zhu, Yongsheng & Tao, Chengjun & Xu, Tao & Song, Mingzhi, 2012. "The engine knock analysis – An overview," Applied Energy, Elsevier, vol. 92(C), pages 628-636.
    25. Rinaldini, Carlo Alberto & Mattarelli, Enrico & Golovitchev, Valeri I., 2013. "Potential of the Miller cycle on a HSDI diesel automotive engine," Applied Energy, Elsevier, vol. 112(C), pages 102-119.
    26. Zhao, Yingru & Chen, Jincan, 2006. "Performance analysis and parametric optimum criteria of an irreversible Atkinson heat-engine," Applied Energy, Elsevier, vol. 83(8), pages 789-800, August.
    27. Ziegler, Andreas, 2012. "Individual characteristics and stated preferences for alternative energy sources and propulsion technologies in vehicles: A discrete choice analysis for Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(8), pages 1372-1385.
    28. Ge, Yanlin & Chen, Lingen & Sun, Fengrui & Wu, Chih, 2006. "Performance of an Atkinson cycle with heat transfer, friction and variable specific-heats of the working fluid," Applied Energy, Elsevier, vol. 83(11), pages 1210-1221, November.
    29. Gonca, Guven & Sahin, Bahri & Parlak, Adnan & Ayhan, Vezir & Cesur, İdris & Koksal, Sakip, 2015. "Application of the Miller cycle and turbo charging into a diesel engine to improve performance and decrease NO emissions," Energy, Elsevier, vol. 93(P1), pages 795-800.
    30. Ruan, Jiageng & Walker, Paul & Zhang, Nong, 2016. "A comparative study energy consumption and costs of battery electric vehicle transmissions," Applied Energy, Elsevier, vol. 165(C), pages 119-134.
    31. Sher, E. & Bar-Kohany, T., 2002. "Optimization of variable valve timing for maximizing performance of an unthrottled SI engine—a theoretical study," Energy, Elsevier, vol. 27(8), pages 757-775.
    32. Doucette, Reed T. & McCulloch, Malcolm D., 2011. "Modeling the CO2 emissions from battery electric vehicles given the power generation mixes of different countries," Energy Policy, Elsevier, vol. 39(2), pages 803-811, February.
    33. Tavakoli, Sady & Jazayeri, S. Ali & Fathi, Morteza & Jahanian, Omid, 2016. "Miller cycle application to improve lean burn gas engine performance," Energy, Elsevier, vol. 109(C), pages 190-200.
    34. Wang, Yaodong & Lin, Lin & Zeng, Shengchuo & Huang, Jincheng & Roskilly, Anthony P. & He, Yunxin & Huang, Xiaodong & Li, Shanping, 2008. "Application of the Miller cycle to reduce NOx emissions from petrol engines," Applied Energy, Elsevier, vol. 85(6), pages 463-474, June.
    35. Onat, Nuri Cihat & Kucukvar, Murat & Tatari, Omer, 2015. "Conventional, hybrid, plug-in hybrid or electric vehicles? State-based comparative carbon and energy footprint analysis in the United States," Applied Energy, Elsevier, vol. 150(C), pages 36-49.
    36. Ferrero, Enrico & Alessandrini, Stefano & Balanzino, Alessia, 2016. "Impact of the electric vehicles on the air pollution from a highway," Applied Energy, Elsevier, vol. 169(C), pages 450-459.
    37. Zhu, Sipeng & Deng, Kangyao & Liu, Sheng & Qu, Shuan, 2015. "Comparative analysis and evaluation of turbocharged Dual and Miller cycles under different operating conditions," Energy, Elsevier, vol. 93(P1), pages 75-87.
    38. Zhao, Xin & Doering, Otto C. & Tyner, Wallace E., 2015. "The economic competitiveness and emissions of battery electric vehicles in China," Applied Energy, Elsevier, vol. 156(C), pages 666-675.
    39. Chen, Bo-Chiuan & Wu, Yuh-Yih & Tsai, Hsien-Chi, 2014. "Design and analysis of power management strategy for range extended electric vehicle using dynamic programming," Applied Energy, Elsevier, vol. 113(C), pages 1764-1774.
    40. Al-Sarkhi, A. & Jaber, J.O. & Probert, S.D., 2006. "Efficiency of a Miller engine," Applied Energy, Elsevier, vol. 83(4), pages 343-351, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gonca, Guven & Sahin, Bahri & Parlak, Adnan & Ayhan, Vezir & Cesur, Idris & Koksal, Sakip, 2017. "Investigation of the effects of the steam injection method (SIM) on the performance and emission formation of a turbocharged and Miller cycle diesel engine (MCDE)," Energy, Elsevier, vol. 119(C), pages 926-937.
    2. Li, Yangtao & Khajepour, Amir & Devaud, Cécile, 2018. "Realization of variable Otto-Atkinson cycle using variable timing hydraulic actuated valve train for performance and efficiency improvements in unthrottled gasoline engines," Applied Energy, Elsevier, vol. 222(C), pages 199-215.
    3. Gonca, Guven, 2016. "Comparative performance analyses of irreversible OMCE (Otto Miller cycle engine)-DiMCE (Diesel miller cycle engine)-DMCE (Dual Miller cycle engine)," Energy, Elsevier, vol. 109(C), pages 152-159.
    4. De Bellis, Vincenzo, 2016. "Performance optimization of a spark-ignition turbocharged VVA engine under knock limited operation," Applied Energy, Elsevier, vol. 164(C), pages 162-174.
    5. Imperato, Matteo & Kaario, Ossi & Sarjovaara, Teemu & Larmi, Martti, 2016. "Split fuel injection and Miller cycle in a large-bore engine," Applied Energy, Elsevier, vol. 162(C), pages 289-297.
    6. Rami Y. Dahham & Haiqiao Wei & Jiaying Pan, 2022. "Improving Thermal Efficiency of Internal Combustion Engines: Recent Progress and Remaining Challenges," Energies, MDPI, vol. 15(17), pages 1-60, August.
    7. Wei, Shengli & Zhao, Xiqian & Liu, Xin & Qu, Xiaonan & He, Chunhui & Leng, Xianyin, 2019. "Research on effects of early intake valve closure (EIVC) miller cycle on combustion and emissions of marine diesel engines at medium and low loads," Energy, Elsevier, vol. 173(C), pages 48-58.
    8. Li, Yangtao & Khajepour, Amir & Devaud, Cécile & Liu, Kaimin, 2017. "Power and fuel economy optimizations of gasoline engines using hydraulic variable valve actuation system," Applied Energy, Elsevier, vol. 206(C), pages 577-593.
    9. Teodosio, Luigi & Pirrello, Dino & Berni, Fabio & De Bellis, Vincenzo & Lanzafame, Rosario & D'Adamo, Alessandro, 2018. "Impact of intake valve strategies on fuel consumption and knock tendency of a spark ignition engine," Applied Energy, Elsevier, vol. 216(C), pages 91-104.
    10. Nienhueser, Ian Andrew & Qiu, Yueming, 2016. "Economic and environmental impacts of providing renewable energy for electric vehicle charging – A choice experiment study," Applied Energy, Elsevier, vol. 180(C), pages 256-268.
    11. Xu, Han & Yao, Anren & Yao, Chunde & Gao, Jian, 2017. "Investigation of energy transformation and damage effect under severe knock of engines," Applied Energy, Elsevier, vol. 203(C), pages 506-521.
    12. Gonca, Guven & Sahin, Bahri & Parlak, Adnan & Ayhan, Vezir & Cesur, İdris & Koksal, Sakip, 2015. "Application of the Miller cycle and turbo charging into a diesel engine to improve performance and decrease NO emissions," Energy, Elsevier, vol. 93(P1), pages 795-800.
    13. Gonca, Guven & Sahin, Bahri & Parlak, Adnan & Ust, Yasin & Ayhan, Vezir & Cesur, İdris & Boru, Barış, 2014. "The effects of steam injection on the performance and emission parameters of a Miller cycle diesel engine," Energy, Elsevier, vol. 78(C), pages 266-275.
    14. Sun, Lishan & Huang, Yuchen & Liu, Shuli & Chen, Yanyan & Yao, Liya & Kashyap, Anil, 2017. "A completive survey study on the feasibility and adaptation of EVs in Beijing, China," Applied Energy, Elsevier, vol. 187(C), pages 128-139.
    15. Gonca, Guven & Dobrucali, Erinc, 2016. "Theoretical and experimental study on the performance of a diesel engine fueled with diesel–biodiesel blends," Renewable Energy, Elsevier, vol. 93(C), pages 658-666.
    16. Broatch, A. & Margot, X. & Novella, R. & Gomez-Soriano, J., 2016. "Combustion noise analysis of partially premixed combustion concept using gasoline fuel in a 2-stroke engine," Energy, Elsevier, vol. 107(C), pages 612-624.
    17. Zhu, Sipeng & Liu, Sheng & Qu, Shuan & Deng, Kangyao, 2017. "Thermodynamic and experimental researches on matching strategies of the pre-turbine steam injection and the Miller cycle applied on a turbocharged diesel engine," Energy, Elsevier, vol. 140(P1), pages 488-505.
    18. Jung, Dongwon & Lee, Sejun, 2018. "An investigation on the potential of dedicated exhaust gas recirculation for improving thermal efficiency of stoichiometric and lean spark ignition engine operation," Applied Energy, Elsevier, vol. 228(C), pages 1754-1766.
    19. Weichao Wang & Guiyong Wang & Zhengjiang Wang & Jilin Lei & Junwei Huang & Xuexuan Nie & Lizhong Shen, 2022. "Optimization of Miller Cycle, EGR, and VNT on Performance and NOx Emission of a Diesel Engine for Range Extender at High Altitude," Energies, MDPI, vol. 15(23), pages 1-20, November.
    20. Tavakoli, Sady & Jazayeri, S. Ali & Fathi, Morteza & Jahanian, Omid, 2016. "Miller cycle application to improve lean burn gas engine performance," Energy, Elsevier, vol. 109(C), pages 190-200.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:185:y:2017:i:p1:p:300-319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.