IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v247y2019icp140-154.html
   My bibliography  Save this article

Spatio-temporal effect of the breakdown zone in the laser-initiated ignition of atomized ethyl alcohol-air mixture

Author

Listed:
  • Singh, Awanish Pratap
  • Padhi, Upasana P.
  • Joarder, Ratan
  • Roy, Arnab

Abstract

Laser initiated ignition would play a vital role in future gas turbine combustors. Two lasers of 270 μJ and 50 mJ pulse energy are used to study the laser-induced spark ignition of atomized ethyl alcohol-air mixture. With the low-energy pulse of 270 μJ energy, no display of ignition is observed even though it fulfills the threshold conditions to create breakdown. However, with the high-energy pulse of 50 mJ energy, ignition is observed if the plasma kernel was following certain conditions after the occurrence of the breakdown. It is observed that breakdown created by the low-energy pulse was unable to ignite the atomized ethanol-air mixture because the lifetime of the plasma kernel was very small (in microseconds). While performing the study with high-energy pulse, it is observed that the breakdown becomes a sufficient condition for ignition only when the lifetime of the kernel is couple of milliseconds. Additionally, the spatial location of the laser spark is found to play a vital role in successful ignition of the mixture. This work also discusses the spray formation process with its effect on ignition and the role of the third lobe on rapid development of the plasma kernel. The process of laser energy deposition to full scale combustion is categorized into three events. Finally, based on the experimental observations, this work has proposed some favourable conditions for initiating ignition with a laser spark. Knowledge of the proposed conditions can play a vital role for designing a practical laser ignition system.

Suggested Citation

  • Singh, Awanish Pratap & Padhi, Upasana P. & Joarder, Ratan & Roy, Arnab, 2019. "Spatio-temporal effect of the breakdown zone in the laser-initiated ignition of atomized ethyl alcohol-air mixture," Applied Energy, Elsevier, vol. 247(C), pages 140-154.
  • Handle: RePEc:eee:appene:v:247:y:2019:i:c:p:140-154
    DOI: 10.1016/j.apenergy.2019.04.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919306889
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.04.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cai, Zun & Zhu, Jiajian & Sun, Mingbo & Wang, Zhenguo & Bai, Xue-Song, 2018. "Ignition processes and modes excited by laser-induced plasma in a cavity-based supersonic combustor," Applied Energy, Elsevier, vol. 228(C), pages 1777-1782.
    2. Bao, Xiuchao & Sahu, Amrit & Jiang, Yizhaou & Badawy, Tawfik & Xu, Hongming, 2019. "Flame kernel evolution and shock wave propagation with laser ignition in ethanol-air mixtures," Applied Energy, Elsevier, vol. 233, pages 86-98.
    3. Fraioli, Valentina & Mancaruso, Ezio & Migliaccio, Marianna & Vaglieco, Bianca Maria, 2014. "Ethanol effect as premixed fuel in dual-fuel CI engines: Experimental and numerical investigations," Applied Energy, Elsevier, vol. 119(C), pages 394-404.
    4. Pedrozo, Vinícius B. & May, Ian & Zhao, Hua, 2017. "Exploring the mid-load potential of ethanol-diesel dual-fuel combustion with and without EGR," Applied Energy, Elsevier, vol. 193(C), pages 263-275.
    5. Hwang, Joonsik & Kim, Wooyeong & Bae, Choongsik & Choe, Wonho & Cha, Jeonghwa & Woo, Soohyung, 2017. "Application of a novel microwave-assisted plasma ignition system in a direct injection gasoline engine," Applied Energy, Elsevier, vol. 205(C), pages 562-576.
    6. Man, Hanyang & Liu, Huan & Xiao, Qian & Deng, Fanyuan & Yu, Qiao & Wang, Kai & Yang, Zhengjun & Wu, Ye & He, Kebin & Hao, Jiming, 2018. "How ethanol and gasoline formula changes evaporative emissions of the vehicles," Applied Energy, Elsevier, vol. 222(C), pages 584-594.
    7. Dong, Shijun & Wang, Zhaowen & Yang, Can & Ou, Biao & Lu, Hongguang & Xu, Haocheng & Cheng, Xiaobei, 2018. "Investigations on the effects of fuel stratification on auto-ignition and combustion process of an ethanol/diesel dual-fuel engine," Applied Energy, Elsevier, vol. 230(C), pages 19-30.
    8. Mariani, Antonio & Foucher, Fabrice, 2014. "Radio frequency spark plug: An ignition system for modern internal combustion engines," Applied Energy, Elsevier, vol. 122(C), pages 151-161.
    9. Pedrozo, Vinícius B. & Zhao, Hua, 2018. "Improvement in high load ethanol-diesel dual-fuel combustion by Miller cycle and charge air cooling," Applied Energy, Elsevier, vol. 210(C), pages 138-151.
    10. Badawy, Tawfik & Bao, XiuChao & Xu, Hongming, 2017. "Impact of spark plug gap on flame kernel propagation and engine performance," Applied Energy, Elsevier, vol. 191(C), pages 311-327.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Shijun & Wang, Zhaowen & Yang, Can & Ou, Biao & Lu, Hongguang & Xu, Haocheng & Cheng, Xiaobei, 2018. "Investigations on the effects of fuel stratification on auto-ignition and combustion process of an ethanol/diesel dual-fuel engine," Applied Energy, Elsevier, vol. 230(C), pages 19-30.
    2. Discepoli, G. & Cruccolini, V. & Ricci, F. & Di Giuseppe, A. & Papi, S. & Grimaldi, C.N., 2020. "Experimental characterisation of the thermal energy released by a Radio-Frequency Corona Igniter in nitrogen and air," Applied Energy, Elsevier, vol. 263(C).
    3. Mendiburu, Andrés Z. & Lauermann, Carlos H. & Hayashi, Thamy C. & Mariños, Diego J. & Rodrigues da Costa, Roberto Berlini & Coronado, Christian J.R. & Roberts, Justo J. & de Carvalho, João A., 2022. "Ethanol as a renewable biofuel: Combustion characteristics and application in engines," Energy, Elsevier, vol. 257(C).
    4. Yin, Xiaojun & Sun, Nannan & Sun, Ting & Shen, Hongguang & Mehra, Roopesh Kumar & Liu, Junlong & Wang, Ying & Yang, Bo & Zeng, Ke, 2022. "Experimental investigation the effects of spark discharge characteristics on the heavy-duty spark ignition natural gas engine at low load condition," Energy, Elsevier, vol. 239(PC).
    5. Shizheng Liu & Ningbo Zhao & Jianguo Zhang & Jialong Yang & Zhiming Li & Hongtao Zheng, 2019. "Experimental and Numerical Investigations of Plasma Ignition Characteristics in Gas Turbine Combustors," Energies, MDPI, vol. 12(8), pages 1-16, April.
    6. Yong Hyun Choi & Joonsik Hwang, 2023. "Review on Plasma-Assisted Ignition Systems for Internal Combustion Engine Application," Energies, MDPI, vol. 16(4), pages 1-25, February.
    7. Schröder, Lukas & Hillenbrand, Thomas & Brüggemann, Dieter, 2024. "Evaluation of the combustion process of directly injected methane in a rapid compression machine with a laser-based ignition system and an electrical ignition system," Energy, Elsevier, vol. 289(C).
    8. Wang, Xiaoling & Gao, Yuan & Zhang, Shuai & Sun, Hao & Li, Jie & Shao, Tao, 2019. "Nanosecond pulsed plasma assisted dry reforming of CH4: The effect of plasma operating parameters," Applied Energy, Elsevier, vol. 243(C), pages 132-144.
    9. Cai, Zun & Zhu, Jiajian & Sun, Mingbo & Wang, Zhenguo & Bai, Xue-Song, 2018. "Ignition processes and modes excited by laser-induced plasma in a cavity-based supersonic combustor," Applied Energy, Elsevier, vol. 228(C), pages 1777-1782.
    10. Huang, Haozhong & Zhu, Zhaojun & Zhu, Jizhen & Lv, Delin & Pan, Yuping & Wei, Hongling & Teng, Wenwen, 2019. "Experimental and numerical study of pre-injection effects on diesel-n-butanol blends combustion," Applied Energy, Elsevier, vol. 249(C), pages 377-391.
    11. Fei Ma & Lingyan Guo & Zhijie Li & Xiaoxiao Zeng & Zhencao Zheng & Wei Li & Feiyang Zhao & Wenbin Yu, 2023. "A Review of Current Advances in Ammonia Combustion from the Fundamentals to Applications in Internal Combustion Engines," Energies, MDPI, vol. 16(17), pages 1-20, August.
    12. Wang, Bin & Yao, Anren & Yao, Chunde & Chen, Chao & Wang, Hui, 2020. "In-depth comparison between pure diesel and diesel methanol dual fuel combustion mode," Applied Energy, Elsevier, vol. 278(C).
    13. Zhiqiang Li & Jing Qin & Yiqiang Pei & Kai Zhong & Zhiyong Zhang & Jian Sun, 2023. "The Lean-Burn Limit Extending Experiment on Gasoline Engine with Dual Injection Strategy and High Power Ignition System," Energies, MDPI, vol. 16(15), pages 1-16, July.
    14. Jung, Dongwon & Sasaki, Kosaku & Iida, Norimasa, 2017. "Effects of increased spark discharge energy and enhanced in-cylinder turbulence level on lean limits and cycle-to-cycle variations of combustion for SI engine operation," Applied Energy, Elsevier, vol. 205(C), pages 1467-1477.
    15. Liu, Junheng & Yang, Jun & Sun, Ping & Gao, Wanying & Yang, Chen & Fang, Jia, 2019. "Compound combustion and pollutant emissions characteristics of a common-rail engine with ethanol homogeneous charge and polyoxymethylene dimethyl ethers injection," Applied Energy, Elsevier, vol. 239(C), pages 1154-1162.
    16. Huang, Zhiwei & Zhang, Huangwei, 2020. "Investigations of autoignition and propagation of supersonic ethylene flames stabilized by a cavity," Applied Energy, Elsevier, vol. 265(C).
    17. Miao, Junjie & Fan, Yuxin & Wu, Weiqiu & Zhao, Shilong, 2021. "Effect of air-assistant on ignition and flame-holding characteristics in a cavity-strut based combustor," Applied Energy, Elsevier, vol. 283(C).
    18. Andwari, Amin Mahmoudzadeh & Aziz, Azhar Abdul & Said, Mohd Farid Muhamad & Latiff, Zulkarnain Abdul, 2014. "Experimental investigation of the influence of internal and external EGR on the combustion characteristics of a controlled auto-ignition two-stroke cycle engine," Applied Energy, Elsevier, vol. 134(C), pages 1-10.
    19. Bao, Xiuchao & Jiang, Yizhou & Xu, Hongming & Wang, Chongming & Lattimore, Thomas & Tang, Lan, 2017. "Laminar flame characteristics of cyclopentanone at elevated temperatures," Applied Energy, Elsevier, vol. 195(C), pages 671-680.
    20. Wang, Yifeng & Yao, Mingfa & Li, Tie & Zhang, Weijing & Zheng, Zunqing, 2016. "A parametric study for enabling reactivity controlled compression ignition (RCCI) operation in diesel engines at various engine loads," Applied Energy, Elsevier, vol. 175(C), pages 389-402.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:247:y:2019:i:c:p:140-154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.