IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v109y2016icp152-159.html
   My bibliography  Save this article

Comparative performance analyses of irreversible OMCE (Otto Miller cycle engine)-DiMCE (Diesel miller cycle engine)-DMCE (Dual Miller cycle engine)

Author

Listed:
  • Gonca, Guven

Abstract

In this paper, comparative performance analyses of the irreversible OMCE (Otto Miller cycle engine), DiMCE (Diesel Miller cycle engine) and DMCE (Dual Miller cycle engine) based on the MP (maximum dimensionless power) output, MPD (maximum dimensionless power density) and MEF (maximum thermal efficiency) criteria have been performed by taking irreversibility due to irreversible-adiabatic compression and expansion processes into account. The maximum values of the thermal efficiency, dimensionless power output and dimensionless power density are obtained depending on pressure ratio, stroke ratio, cut-off ratio, miller cycle ratio, exhaust temperature ratio, cycle temperature ratio and cycle pressure ratio and the isentropic efficiencies of irreversible-adiabatic processes. The engine design parameters at the MP, MPD and MEF conditions are determined and their variations are investigated with respect to miller cycle ratio.

Suggested Citation

  • Gonca, Guven, 2016. "Comparative performance analyses of irreversible OMCE (Otto Miller cycle engine)-DiMCE (Diesel miller cycle engine)-DMCE (Dual Miller cycle engine)," Energy, Elsevier, vol. 109(C), pages 152-159.
  • Handle: RePEc:eee:energy:v:109:y:2016:i:c:p:152-159
    DOI: 10.1016/j.energy.2016.04.049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216304558
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.04.049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mousapour, Ashkan & Hajipour, Alireza & Rashidi, Mohammad Mehdi & Freidoonimehr, Navid, 2016. "Performance evaluation of an irreversible Miller cycle comparing FTT (finite-time thermodynamics) analysis and ANN (artificial neural network) prediction," Energy, Elsevier, vol. 94(C), pages 100-109.
    2. Imperato, Matteo & Kaario, Ossi & Sarjovaara, Teemu & Larmi, Martti, 2016. "Split fuel injection and Miller cycle in a large-bore engine," Applied Energy, Elsevier, vol. 162(C), pages 289-297.
    3. Ust, Yasin & Arslan, Feyyaz & Ozsari, Ibrahim & Cakir, Mehmet, 2015. "Thermodynamic performance analysis and optimization of DMC (Dual Miller Cycle) cogeneration system by considering exergetic performance coefficient and total exergy output criteria," Energy, Elsevier, vol. 90(P1), pages 552-559.
    4. Mikalsen, R. & Wang, Y.D. & Roskilly, A.P., 2009. "A comparison of Miller and Otto cycle natural gas engines for small scale CHP applications," Applied Energy, Elsevier, vol. 86(6), pages 922-927, June.
    5. Gonca, Guven & Sahin, Bahri & Parlak, Adnan & Ust, Yasin & Ayhan, Vezir & Cesur, İdris & Boru, Barış, 2014. "The effects of steam injection on the performance and emission parameters of a Miller cycle diesel engine," Energy, Elsevier, vol. 78(C), pages 266-275.
    6. Gonca, Guven & Dobrucali, Erinc, 2016. "Theoretical and experimental study on the performance of a diesel engine fueled with diesel–biodiesel blends," Renewable Energy, Elsevier, vol. 93(C), pages 658-666.
    7. Benajes, Jesús & Molina, Santiago & Novella, Ricardo & Belarte, Eduardo, 2014. "Evaluation of massive exhaust gas recirculation and Miller cycle strategies for mixing-controlled low temperature combustion in a heavy duty diesel engine," Energy, Elsevier, vol. 71(C), pages 355-366.
    8. Gonca, Guven & Sahin, Bahri & Parlak, Adnan & Ust, Yasin & Ayhan, Vezir & Cesur, İdris & Boru, Barış, 2015. "Theoretical and experimental investigation of the Miller cycle diesel engine in terms of performance and emission parameters," Applied Energy, Elsevier, vol. 138(C), pages 11-20.
    9. Chen, Lingen & Zeng, Fanming & Sun, Fengrui & Wu, Chih, 1996. "Heat-transfer effects on net work and/or power as functions of efficiency for air-standard diesel cycles," Energy, Elsevier, vol. 21(12), pages 1201-1205.
    10. Rinaldini, Carlo Alberto & Mattarelli, Enrico & Golovitchev, Valeri I., 2013. "Potential of the Miller cycle on a HSDI diesel automotive engine," Applied Energy, Elsevier, vol. 112(C), pages 102-119.
    11. Dobrucali, Erinc, 2016. "The effects of the engine design and running parameters on the performance of a Otto–Miller Cycle engine," Energy, Elsevier, vol. 103(C), pages 119-126.
    12. Gonca, Guven & Sahin, Bahri & Parlak, Adnan & Ayhan, Vezir & Cesur, İdris & Koksal, Sakip, 2015. "Application of the Miller cycle and turbo charging into a diesel engine to improve performance and decrease NO emissions," Energy, Elsevier, vol. 93(P1), pages 795-800.
    13. Gonca, Guven & Sahin, Bahri & Ust, Yasin, 2013. "Performance maps for an air-standard irreversible Dual–Miller cycle (DMC) with late inlet valve closing (LIVC) version," Energy, Elsevier, vol. 54(C), pages 285-290.
    14. Verschaeren, Roel & Schaepdryver, Wouter & Serruys, Thomas & Bastiaen, Marc & Vervaeke, Lieven & Verhelst, Sebastian, 2014. "Experimental study of NOx reduction on a medium speed heavy duty diesel engine by the application of EGR (exhaust gas recirculation) and Miller timing," Energy, Elsevier, vol. 76(C), pages 614-621.
    15. Şahi̇n, Bahri̇ & Kodal, Ali̇ & Yavuz, Hasbi̇, 1996. "Maximum power density for an endoreversible carnot heat engine," Energy, Elsevier, vol. 21(12), pages 1219-1225.
    16. Zhu, Sipeng & Deng, Kangyao & Liu, Sheng & Qu, Shuan, 2015. "Comparative analysis and evaluation of turbocharged Dual and Miller cycles under different operating conditions," Energy, Elsevier, vol. 93(P1), pages 75-87.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gonca, Guven, 2017. "Exergetic and ecological performance analyses of a gas turbine system with two intercoolers and two re-heaters," Energy, Elsevier, vol. 124(C), pages 579-588.
    2. Shahriyar Abedinnezhad & Mohammad Hossein Ahmadi & Seyed Mohsen Pourkiaei & Fathollah Pourfayaz & Amir Mosavi & Michel Feidt & Shahaboddin Shamshirband, 2019. "Thermodynamic Assessment and Multi-Objective Optimization of Performance of Irreversible Dual-Miller Cycle," Energies, MDPI, vol. 12(20), pages 1-25, October.
    3. Xu, Guangfu & Jia, Ming & Li, Yaopeng & Xie, Maozhao & Su, Wanhua, 2017. "Multi-objective optimization of the combustion of a heavy-duty diesel engine with low temperature combustion (LTC) under a wide load range: (II) Detailed parametric, energy, and exergy analysis," Energy, Elsevier, vol. 139(C), pages 247-261.
    4. Fanshuo Liu & Bolan Liu & Junwei Zhang & Peng Wan & Ben Li, 2022. "Study on a Novel Variable Valve Timing and Lift Mechanism for a Miller Cycle Diesel Engine," Energies, MDPI, vol. 15(22), pages 1-11, November.
    5. Gonca, Guven & Sahin, Bahri & Parlak, Adnan & Ayhan, Vezir & Cesur, Idris & Koksal, Sakip, 2017. "Investigation of the effects of the steam injection method (SIM) on the performance and emission formation of a turbocharged and Miller cycle diesel engine (MCDE)," Energy, Elsevier, vol. 119(C), pages 926-937.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gonca, Guven & Sahin, Bahri & Parlak, Adnan & Ayhan, Vezir & Cesur, Idris & Koksal, Sakip, 2017. "Investigation of the effects of the steam injection method (SIM) on the performance and emission formation of a turbocharged and Miller cycle diesel engine (MCDE)," Energy, Elsevier, vol. 119(C), pages 926-937.
    2. Zhao, Jinxing, 2017. "Research and application of over-expansion cycle (Atkinson and Miller) engines – A review," Applied Energy, Elsevier, vol. 185(P1), pages 300-319.
    3. Gonca, Guven & Sahin, Bahri & Parlak, Adnan & Ayhan, Vezir & Cesur, İdris & Koksal, Sakip, 2015. "Application of the Miller cycle and turbo charging into a diesel engine to improve performance and decrease NO emissions," Energy, Elsevier, vol. 93(P1), pages 795-800.
    4. Tavakoli, Sady & Jazayeri, S. Ali & Fathi, Morteza & Jahanian, Omid, 2016. "Miller cycle application to improve lean burn gas engine performance," Energy, Elsevier, vol. 109(C), pages 190-200.
    5. Wei, Shengli & Zhao, Xiqian & Liu, Xin & Qu, Xiaonan & He, Chunhui & Leng, Xianyin, 2019. "Research on effects of early intake valve closure (EIVC) miller cycle on combustion and emissions of marine diesel engines at medium and low loads," Energy, Elsevier, vol. 173(C), pages 48-58.
    6. Gonca, Guven & Sahin, Bahri & Parlak, Adnan & Ust, Yasin & Ayhan, Vezir & Cesur, İdris & Boru, Barış, 2014. "The effects of steam injection on the performance and emission parameters of a Miller cycle diesel engine," Energy, Elsevier, vol. 78(C), pages 266-275.
    7. Kichol Noh & Changhee Lee, 2021. "Development of an Ignition System and Assessment of Engine Performance and Exhaust Characteristics of a Marine Gas Engine," Sustainability, MDPI, vol. 13(8), pages 1-16, April.
    8. Gonca, Guven & Dobrucali, Erinc, 2016. "Theoretical and experimental study on the performance of a diesel engine fueled with diesel–biodiesel blends," Renewable Energy, Elsevier, vol. 93(C), pages 658-666.
    9. Broatch, A. & Margot, X. & Novella, R. & Gomez-Soriano, J., 2016. "Combustion noise analysis of partially premixed combustion concept using gasoline fuel in a 2-stroke engine," Energy, Elsevier, vol. 107(C), pages 612-624.
    10. Shahriyar Abedinnezhad & Mohammad Hossein Ahmadi & Seyed Mohsen Pourkiaei & Fathollah Pourfayaz & Amir Mosavi & Michel Feidt & Shahaboddin Shamshirband, 2019. "Thermodynamic Assessment and Multi-Objective Optimization of Performance of Irreversible Dual-Miller Cycle," Energies, MDPI, vol. 12(20), pages 1-25, October.
    11. Edward Roper & Yaodong Wang & Zhichao Zhang, 2022. "Numerical Investigation of the Application of Miller Cycle and Low-Carbon Fuels to Increase Diesel Engine Efficiency and Reduce Emissions," Energies, MDPI, vol. 15(5), pages 1-20, February.
    12. Xu, Guangfu & Jia, Ming & Li, Yaopeng & Xie, Maozhao & Su, Wanhua, 2017. "Multi-objective optimization of the combustion of a heavy-duty diesel engine with low temperature combustion (LTC) under a wide load range: (II) Detailed parametric, energy, and exergy analysis," Energy, Elsevier, vol. 139(C), pages 247-261.
    13. Charalampos Georgiou & Ulugbek Azimov, 2020. "Analysis and Multi-Parametric Optimisation of the Performance and Exhaust Gas Emissions of a Heavy-Duty Diesel Engine Operating on Miller Cycle," Energies, MDPI, vol. 13(14), pages 1-25, July.
    14. Qiao, Junhao & Liu, Jingping & Liang, Jichao & Jia, Dongdong & Wang, Rumin & Shen, Dazi & Duan, Xiongbo, 2023. "Experimental investigation the effects of Miller cycle coupled with asynchronous intake valves on cycle-to-cycle variations and performance of the SI engine," Energy, Elsevier, vol. 263(PD).
    15. Gonca, Guven & Sahin, Bahri & Parlak, Adnan & Ust, Yasin & Ayhan, Vezir & Cesur, İdris & Boru, Barış, 2015. "Theoretical and experimental investigation of the Miller cycle diesel engine in terms of performance and emission parameters," Applied Energy, Elsevier, vol. 138(C), pages 11-20.
    16. Zhu, Sipeng & Liu, Sheng & Qu, Shuan & Deng, Kangyao, 2017. "Thermodynamic and experimental researches on matching strategies of the pre-turbine steam injection and the Miller cycle applied on a turbocharged diesel engine," Energy, Elsevier, vol. 140(P1), pages 488-505.
    17. Weichao Wang & Guiyong Wang & Zhengjiang Wang & Jilin Lei & Junwei Huang & Xuexuan Nie & Lizhong Shen, 2022. "Optimization of Miller Cycle, EGR, and VNT on Performance and NOx Emission of a Diesel Engine for Range Extender at High Altitude," Energies, MDPI, vol. 15(23), pages 1-20, November.
    18. Mousapour, Ashkan & Hajipour, Alireza & Rashidi, Mohammad Mehdi & Freidoonimehr, Navid, 2016. "Performance evaluation of an irreversible Miller cycle comparing FTT (finite-time thermodynamics) analysis and ANN (artificial neural network) prediction," Energy, Elsevier, vol. 94(C), pages 100-109.
    19. Imperato, Matteo & Kaario, Ossi & Sarjovaara, Teemu & Larmi, Martti, 2016. "Split fuel injection and Miller cycle in a large-bore engine," Applied Energy, Elsevier, vol. 162(C), pages 289-297.
    20. Irimescu, Adrian & Merola, Simona Silvia & Tornatore, Cinzia & Valentino, Gerardo, 2015. "Development of a semi-empirical convective heat transfer correlation based on thermodynamic and optical measurements in a spark ignition engine," Applied Energy, Elsevier, vol. 157(C), pages 777-788.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:109:y:2016:i:c:p:152-159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.