IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v83y2006i4p343-351.html
   My bibliography  Save this article

Efficiency of a Miller engine

Author

Listed:
  • Al-Sarkhi, A.
  • Jaber, J.O.
  • Probert, S.D.

Abstract

Using finite-time thermodynamics, the relations between thermal efficiency, compression and expansion ratios for an ideal naturally-aspirated (air-standard) Miller cycle have been derived. The effect of the temperature-dependent specific heat of the working fluid on the irreversible cycle performance is significant. The conclusions of this investigation are of importance when considering the designs of actual Miller-engines.

Suggested Citation

  • Al-Sarkhi, A. & Jaber, J.O. & Probert, S.D., 2006. "Efficiency of a Miller engine," Applied Energy, Elsevier, vol. 83(4), pages 343-351, April.
  • Handle: RePEc:eee:appene:v:83:y:2006:i:4:p:343-351
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(05)00047-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Lingen & Sun, Fengrui & Wu, Chih, 2004. "Optimal performance of an irreversible dual-cycle," Applied Energy, Elsevier, vol. 79(1), pages 3-14, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weichao Wang & Guiyong Wang & Zhengjiang Wang & Jilin Lei & Junwei Huang & Xuexuan Nie & Lizhong Shen, 2022. "Optimization of Miller Cycle, EGR, and VNT on Performance and NOx Emission of a Diesel Engine for Range Extender at High Altitude," Energies, MDPI, vol. 15(23), pages 1-20, November.
    2. Mikalsen, R. & Wang, Y.D. & Roskilly, A.P., 2009. "A comparison of Miller and Otto cycle natural gas engines for small scale CHP applications," Applied Energy, Elsevier, vol. 86(6), pages 922-927, June.
    3. Kyrtatos, Panagiotis & Brückner, Clemens & Boulouchos, Konstantinos, 2016. "Cycle-to-cycle variations in diesel engines," Applied Energy, Elsevier, vol. 171(C), pages 120-132.
    4. Lin, Jiann-Chang & Hou, Shuhn-Shyurng, 2007. "Influence of heat loss on the performance of an air-standard Atkinson cycle," Applied Energy, Elsevier, vol. 84(9), pages 904-920, September.
    5. Wei, Shengli & Zhao, Xiqian & Liu, Xin & Qu, Xiaonan & He, Chunhui & Leng, Xianyin, 2019. "Research on effects of early intake valve closure (EIVC) miller cycle on combustion and emissions of marine diesel engines at medium and low loads," Energy, Elsevier, vol. 173(C), pages 48-58.
    6. Tavakoli, Sady & Jazayeri, S. Ali & Fathi, Morteza & Jahanian, Omid, 2016. "Miller cycle application to improve lean burn gas engine performance," Energy, Elsevier, vol. 109(C), pages 190-200.
    7. Gonca, Guven & Dobrucali, Erinc, 2016. "Theoretical and experimental study on the performance of a diesel engine fueled with diesel–biodiesel blends," Renewable Energy, Elsevier, vol. 93(C), pages 658-666.
    8. Kichol Noh & Changhee Lee, 2021. "Development of an Ignition System and Assessment of Engine Performance and Exhaust Characteristics of a Marine Gas Engine," Sustainability, MDPI, vol. 13(8), pages 1-16, April.
    9. Gonca, Guven & Sahin, Bahri & Ust, Yasin, 2013. "Performance maps for an air-standard irreversible Dual–Miller cycle (DMC) with late inlet valve closing (LIVC) version," Energy, Elsevier, vol. 54(C), pages 285-290.
    10. Wang, Yaodong & Lin, Lin & Zeng, Shengchuo & Huang, Jincheng & Roskilly, Anthony P. & He, Yunxin & Huang, Xiaodong & Li, Shanping, 2008. "Application of the Miller cycle to reduce NOx emissions from petrol engines," Applied Energy, Elsevier, vol. 85(6), pages 463-474, June.
    11. Imperato, Matteo & Kaario, Ossi & Sarjovaara, Teemu & Larmi, Martti, 2016. "Split fuel injection and Miller cycle in a large-bore engine," Applied Energy, Elsevier, vol. 162(C), pages 289-297.
    12. Zhu, Sipeng & Deng, Kangyao & Liu, Sheng & Qu, Shuan, 2015. "Comparative analysis and evaluation of turbocharged Dual and Miller cycles under different operating conditions," Energy, Elsevier, vol. 93(P1), pages 75-87.
    13. Mousapour, Ashkan & Hajipour, Alireza & Rashidi, Mohammad Mehdi & Freidoonimehr, Navid, 2016. "Performance evaluation of an irreversible Miller cycle comparing FTT (finite-time thermodynamics) analysis and ANN (artificial neural network) prediction," Energy, Elsevier, vol. 94(C), pages 100-109.
    14. Gonca, Guven & Sahin, Bahri & Parlak, Adnan & Ust, Yasin & Ayhan, Vezir & Cesur, İdris & Boru, Barış, 2014. "The effects of steam injection on the performance and emission parameters of a Miller cycle diesel engine," Energy, Elsevier, vol. 78(C), pages 266-275.
    15. Gonca, Guven & Sahin, Bahri & Parlak, Adnan & Ust, Yasin & Ayhan, Vezir & Cesur, İdris & Boru, Barış, 2015. "Theoretical and experimental investigation of the Miller cycle diesel engine in terms of performance and emission parameters," Applied Energy, Elsevier, vol. 138(C), pages 11-20.
    16. Zhao, Jinxing, 2017. "Research and application of over-expansion cycle (Atkinson and Miller) engines – A review," Applied Energy, Elsevier, vol. 185(P1), pages 300-319.
    17. Gonca, Guven & Sahin, Bahri & Parlak, Adnan & Ayhan, Vezir & Cesur, Idris & Koksal, Sakip, 2017. "Investigation of the effects of the steam injection method (SIM) on the performance and emission formation of a turbocharged and Miller cycle diesel engine (MCDE)," Energy, Elsevier, vol. 119(C), pages 926-937.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gonca, Guven & Dobrucali, Erinc, 2016. "Theoretical and experimental study on the performance of a diesel engine fueled with diesel–biodiesel blends," Renewable Energy, Elsevier, vol. 93(C), pages 658-666.
    2. Ust, Yasin & Sahin, Bahri & Sogut, Oguz Salim, 2005. "Performance analysis and optimization of an irreversible dual-cycle based on an ecological coefficient of performance criterion," Applied Energy, Elsevier, vol. 82(1), pages 23-39, September.
    3. Mousapour, Ashkan & Hajipour, Alireza & Rashidi, Mohammad Mehdi & Freidoonimehr, Navid, 2016. "Performance evaluation of an irreversible Miller cycle comparing FTT (finite-time thermodynamics) analysis and ANN (artificial neural network) prediction," Energy, Elsevier, vol. 94(C), pages 100-109.
    4. Gonca, Guven & Sahin, Bahri & Ust, Yasin, 2013. "Performance maps for an air-standard irreversible Dual–Miller cycle (DMC) with late inlet valve closing (LIVC) version," Energy, Elsevier, vol. 54(C), pages 285-290.
    5. Lin, Jiann-Chang & Hou, Shuhn-Shyurng, 2007. "Influence of heat loss on the performance of an air-standard Atkinson cycle," Applied Energy, Elsevier, vol. 84(9), pages 904-920, September.
    6. Ust, Yasin & Arslan, Feyyaz & Ozsari, Ibrahim & Cakir, Mehmet, 2015. "Thermodynamic performance analysis and optimization of DMC (Dual Miller Cycle) cogeneration system by considering exergetic performance coefficient and total exergy output criteria," Energy, Elsevier, vol. 90(P1), pages 552-559.
    7. Ge, Yanlin & Chen, Lingen & Sun, Fengrui & Wu, Chih, 2005. "Reciprocating heat-engine cycles," Applied Energy, Elsevier, vol. 81(4), pages 397-408, August.
    8. Ust, Yasin & Sahin, Bahri & Kodal, Ali, 2007. "Optimization of a dual cycle cogeneration system based on a new exergetic performance criterion," Applied Energy, Elsevier, vol. 84(11), pages 1079-1091, November.
    9. Açıkkalp, Emin & Caner, Necmettin, 2015. "Determining of the optimum performance of a nano scale irreversible Dual cycle with quantum gases as working fluid by using different methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 247-258.
    10. Shahriyar Abedinnezhad & Mohammad Hossein Ahmadi & Seyed Mohsen Pourkiaei & Fathollah Pourfayaz & Amir Mosavi & Michel Feidt & Shahaboddin Shamshirband, 2019. "Thermodynamic Assessment and Multi-Objective Optimization of Performance of Irreversible Dual-Miller Cycle," Energies, MDPI, vol. 12(20), pages 1-25, October.
    11. Ge, Yanlin & Chen, Lingen & Sun, Fengrui & Wu, Chih, 2006. "Performance of an Atkinson cycle with heat transfer, friction and variable specific-heats of the working fluid," Applied Energy, Elsevier, vol. 83(11), pages 1210-1221, November.
    12. Al-Sarkhi, A. & Jaber, J.O. & Abu-Qudais, M. & Probert, S.D., 2006. "Effects of friction and temperature-dependent specific-heat of the working fluid on the performance of a Diesel-engine," Applied Energy, Elsevier, vol. 83(2), pages 153-165, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:83:y:2006:i:4:p:343-351. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.