IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v165y2016icp839-848.html
   My bibliography  Save this article

Hybrid EGR and turbocharging systems control for low NOX and fuel consumption in an automotive diesel engine

Author

Listed:
  • Zamboni, Giorgio
  • Moggia, Simone
  • Capobianco, Massimo

Abstract

An experimental investigation was made on a downsized Euro 5 turbocharged diesel engine managing high/low pressure EGR systems and the variable nozzle turbine, aiming at major reductions in NOX emissions while enhancing fuel consumption in comparison with reference configuration. Three part load engine operating conditions were chosen at low and medium speed levels, applying different strategies to a number of control variables (relative air–fuel ratio, VNT opening degree/intake pressure, valves position in low pressure EGR circuit), thus exploring the whole range of high/low pressure EGR proportion. In suitable operating modes of tested conditions, NOX emissions were reduced up to 58–66%. Brake specific fuel consumption decreased around 5–9.5% at low speed/load, 1.7–3.3% in the intermediate condition while no advantages were achieved in the third working point. The activation of low pressure loop confirmed to be beneficial for turbocharger performance, rising its rotational speed thus granting for a better transient response, while increase in soot emissions ranged in a wide interval. For each condition, optimal operating modes were identified, with the relevant EGR proportion. A prevailing contribution from the long route circuit was generally requested, up to the exclusion of short route loop at higher level of speed and load.

Suggested Citation

  • Zamboni, Giorgio & Moggia, Simone & Capobianco, Massimo, 2016. "Hybrid EGR and turbocharging systems control for low NOX and fuel consumption in an automotive diesel engine," Applied Energy, Elsevier, vol. 165(C), pages 839-848.
  • Handle: RePEc:eee:appene:v:165:y:2016:i:c:p:839-848
    DOI: 10.1016/j.apenergy.2015.12.117
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916000039
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.12.117?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Park, Jungsoo & Song, Soonho & Lee, Kyo Seung, 2015. "Numerical investigation of a dual-loop EGR split strategy using a split index and multi-objective Pareto optimization," Applied Energy, Elsevier, vol. 142(C), pages 21-32.
    2. Raptotasios, Spiridon I. & Sakellaridis, Nikolaos F. & Papagiannakis, Roussos G. & Hountalas, Dimitrios T., 2015. "Application of a multi-zone combustion model to investigate the NOx reduction potential of two-stroke marine diesel engines using EGR," Applied Energy, Elsevier, vol. 157(C), pages 814-823.
    3. Zeng, Xiangrui & Wang, Junmin, 2014. "A physics-based time-varying transport delay oxygen concentration model for dual-loop exhaust gas recirculation (EGR) engine air-paths," Applied Energy, Elsevier, vol. 125(C), pages 300-307.
    4. Asad, Usman & Zheng, Ming, 2014. "Exhaust gas recirculation for advanced diesel combustion cycles," Applied Energy, Elsevier, vol. 123(C), pages 242-252.
    5. Park, Youngsoo & Bae, Choongsik, 2014. "Experimental study on the effects of high/low pressure EGR proportion in a passenger car diesel engine," Applied Energy, Elsevier, vol. 133(C), pages 308-316.
    6. Roy, Sumit & Banerjee, Rahul & Bose, Probir Kumar, 2014. "Performance and exhaust emissions prediction of a CRDI assisted single cylinder diesel engine coupled with EGR using artificial neural network," Applied Energy, Elsevier, vol. 119(C), pages 330-340.
    7. Zamboni, Giorgio & Capobianco, Massimo, 2012. "Experimental study on the effects of HP and LP EGR in an automotive turbocharged diesel engine," Applied Energy, Elsevier, vol. 94(C), pages 117-128.
    8. Roy, Sumit & Ghosh, Ashmita & Das, Ajoy Kumar & Banerjee, Rahul, 2015. "Development and validation of a GEP model to predict the performance and exhaust emission parameters of a CRDI assisted single cylinder diesel engine coupled with EGR," Applied Energy, Elsevier, vol. 140(C), pages 52-64.
    9. Solaimuthu, C. & Ganesan, V. & Senthilkumar, D. & Ramasamy, K.K., 2015. "Emission reductions studies of a biodiesel engine using EGR and SCR for agriculture operations in developing countries," Applied Energy, Elsevier, vol. 138(C), pages 91-98.
    10. Serrano, L. & Lopes, M. & Pires, N. & Ribeiro, I. & Cascão, P. & Tarelho, L. & Monteiro, A. & Nielsen, O. & da Silva, M. Gameiro & Borrego, C., 2015. "Evaluation on effects of using low biodiesel blends in a EURO 5 passenger vehicle equipped with a common-rail diesel engine," Applied Energy, Elsevier, vol. 146(C), pages 230-238.
    11. Jung, Dongwon & Iida, Norimasa, 2015. "Closed-loop control of HCCI combustion for DME using external EGR and rebreathed EGR to reduce pressure-rise rate with combustion-phasing retard," Applied Energy, Elsevier, vol. 138(C), pages 315-330.
    12. Cornolti, L. & Onorati, A. & Cerri, T. & Montenegro, G. & Piscaglia, F., 2013. "1D simulation of a turbocharged Diesel engine with comparison of short and long EGR route solutions," Applied Energy, Elsevier, vol. 111(C), pages 1-15.
    13. Millo, Federico & Giacominetto, Paolo Ferrero & Bernardi, Marco Gianoglio, 2012. "Analysis of different exhaust gas recirculation architectures for passenger car Diesel engines," Applied Energy, Elsevier, vol. 98(C), pages 79-91.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Benajes, J. & Novella, R. & Pastor, J.M. & Hernández-López, A. & Duverger, T., 2017. "A computational analysis of the impact of bore-to-stroke ratio on emissions and efficiency of a HSDI engine," Applied Energy, Elsevier, vol. 205(C), pages 903-910.
    2. Cosmin Constantin Suciu & Sorin Vlad Igret & Ion Vetres & Ioana Ionel, 2024. "Review of the Integration of Hybrid Electric Turbochargers for Mass-Produced Road Vehicles," Energies, MDPI, vol. 17(6), pages 1-22, March.
    3. Baek, Seungju & Lee, Hyeonjik & Lee, Kihyung, 2021. "Fuel efficiency and exhaust characteristics of turbocharged diesel engine equipped with an electric supercharger," Energy, Elsevier, vol. 214(C).
    4. Sangram Kishore Nanda & Boru Jia & Andrew Smallbone & Anthony Paul Roskilly, 2017. "Fundamental Analysis of Thermal Overload in Diesel Engines: Hypothesis and Validation," Energies, MDPI, vol. 10(3), pages 1-12, March.
    5. Deng, Yuanwang & Liu, Huawei & Zhao, Xiaohuan & E, Jiaqiang & Chen, Jianmei, 2018. "Effects of cold start control strategy on cold start performance of the diesel engine based on a comprehensive preheat diesel engine model," Applied Energy, Elsevier, vol. 210(C), pages 279-287.
    6. Tsokolis, D. & Tsiakmakis, S. & Dimaratos, A. & Fontaras, G. & Pistikopoulos, P. & Ciuffo, B. & Samaras, Z., 2016. "Fuel consumption and CO2 emissions of passenger cars over the New Worldwide Harmonized Test Protocol," Applied Energy, Elsevier, vol. 179(C), pages 1152-1165.
    7. Jarosław Ziółkowski & Mateusz Oszczypała & Jerzy Małachowski & Joanna Szkutnik-Rogoż, 2021. "Use of Artificial Neural Networks to Predict Fuel Consumption on the Basis of Technical Parameters of Vehicles," Energies, MDPI, vol. 14(9), pages 1-23, May.
    8. Bahiuddin, Irfan & Mazlan, Saiful Amri & Imaduddin, Fitrian & Ubaidillah,, 2017. "A new control-oriented transient model of variable geometry turbocharger," Energy, Elsevier, vol. 125(C), pages 297-312.
    9. Ko, Jinyoung & Jin, Dongyoung & Jang, Wonwook & Myung, Cha-Lee & Kwon, Sangil & Park, Simsoo, 2017. "Comparative investigation of NOx emission characteristics from a Euro 6-compliant diesel passenger car over the NEDC and WLTC at various ambient temperatures," Applied Energy, Elsevier, vol. 187(C), pages 652-662.
    10. Giorgio Zamboni, 2018. "A Study on Combustion Parameters in an Automotive Turbocharged Diesel Engine," Energies, MDPI, vol. 11(10), pages 1-21, September.
    11. Reihani, Amin & Hoard, John & Klinkert, Stefan & Kuan, Chih-Kuang & Styles, Daniel & McConville, Greg, 2020. "Experimental response surface study of the effects of low-pressure exhaust gas recirculation mixing on turbocharger compressor performance," Applied Energy, Elsevier, vol. 261(C).
    12. Park, Jungsoo & Choi, Jungwook, 2016. "Optimization of dual-loop exhaust gas recirculation splitting for a light-duty diesel engine with model-based control," Applied Energy, Elsevier, vol. 181(C), pages 268-277.
    13. Park, Sangjun & Cho, Jungkeun & Park, Jungsoo, 2019. "Numerical methodology on virtual model extension and system-level optimization of light-duty diesel vehicle with dual-loop exhaust gas recirculation," Applied Energy, Elsevier, vol. 242(C), pages 1422-1435.
    14. Rami Y. Dahham & Haiqiao Wei & Jiaying Pan, 2022. "Improving Thermal Efficiency of Internal Combustion Engines: Recent Progress and Remaining Challenges," Energies, MDPI, vol. 15(17), pages 1-60, August.
    15. Zhu, Dengting & Zheng, Xinqian, 2019. "Fuel consumption and emission characteristics in asymmetric twin-scroll turbocharged diesel engine with two exhaust gas recirculation circuits," Applied Energy, Elsevier, vol. 238(C), pages 985-995.
    16. Baek, Seungju & Woo, Seungchul & Kim, Youngkun & Lee, Kihyung, 2019. "Prediction of turbocharged diesel engine performance equipped with an electric supercharger using 1D simulation," Energy, Elsevier, vol. 185(C), pages 213-228.
    17. Giorgio Zamboni & Simone Moggia & Massimo Capobianco, 2017. "Effects of a Dual-Loop Exhaust Gas Recirculation System and Variable Nozzle Turbine Control on the Operating Parameters of an Automotive Diesel Engine," Energies, MDPI, vol. 10(1), pages 1-18, January.
    18. Mohd Muqeem & Ahmad Faizan Sherwani & Mukhtar Ahmad & Zahid Akhtar Khan, 2018. "Optimization of diesel engine input parameters for reducing hydrocarbon emission and smoke opacity using Taguchi method and analysis of variance," Energy & Environment, , vol. 29(3), pages 410-431, May.
    19. Lu, Kai & Bai, Shuzhan & Zang, Zhicheng & Li, Guoxiang, 2023. "Study on urea deposits risk of after-treatment system based on deposits boundary method," Energy, Elsevier, vol. 267(C).
    20. Zhao, Jinxing, 2017. "Research and application of over-expansion cycle (Atkinson and Miller) engines – A review," Applied Energy, Elsevier, vol. 185(P1), pages 300-319.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giorgio Zamboni & Simone Moggia & Massimo Capobianco, 2017. "Effects of a Dual-Loop Exhaust Gas Recirculation System and Variable Nozzle Turbine Control on the Operating Parameters of an Automotive Diesel Engine," Energies, MDPI, vol. 10(1), pages 1-18, January.
    2. Wang, Dawei & Shi, Lei & Zhu, Sipeng & Liu, Bo & Qian, Yuehua & Deng, Kangyao, 2020. "Numerical and thermodynamic study on effects of high and low pressure exhaust gas recirculation on turbocharged marine low-speed engine," Applied Energy, Elsevier, vol. 261(C).
    3. Yoon, Wonjun & Kim, Jonghyun & Chung, Chungsoo & Park, Jungsoo, 2022. "Numerical study on prediction of icing phenomena in intake system of diesel engine: Operating conditions with low-to-middle velocity of inlet air," Energy, Elsevier, vol. 248(C).
    4. Zhu, Dengting & Zheng, Xinqian, 2018. "A new asymmetric twin-scroll turbine with two wastegates for energy improvements in diesel engines," Applied Energy, Elsevier, vol. 223(C), pages 263-272.
    5. Andwari, Amin Mahmoudzadeh & Aziz, Azhar Abdul & Said, Mohd Farid Muhamad & Latiff, Zulkarnain Abdul, 2014. "Experimental investigation of the influence of internal and external EGR on the combustion characteristics of a controlled auto-ignition two-stroke cycle engine," Applied Energy, Elsevier, vol. 134(C), pages 1-10.
    6. Park, Jungsoo & Song, Soonho & Lee, Kyo Seung, 2015. "Numerical investigation of a dual-loop EGR split strategy using a split index and multi-objective Pareto optimization," Applied Energy, Elsevier, vol. 142(C), pages 21-32.
    7. Reihani, Amin & Hoard, John & Klinkert, Stefan & Kuan, Chih-Kuang & Styles, Daniel & McConville, Greg, 2020. "Experimental response surface study of the effects of low-pressure exhaust gas recirculation mixing on turbocharger compressor performance," Applied Energy, Elsevier, vol. 261(C).
    8. Liu, Bolan & Zhang, Fujun & Zhao, Changlu & An, Xiaohui & Pei, Haijun, 2016. "A novel lambda-based EGR (exhaust gas recirculation) modulation method for a turbocharged diesel engine under transient operation," Energy, Elsevier, vol. 96(C), pages 521-530.
    9. Raptotasios, Spiridon I. & Sakellaridis, Nikolaos F. & Papagiannakis, Roussos G. & Hountalas, Dimitrios T., 2015. "Application of a multi-zone combustion model to investigate the NOx reduction potential of two-stroke marine diesel engines using EGR," Applied Energy, Elsevier, vol. 157(C), pages 814-823.
    10. Park, Jungsoo & Choi, Jungwook, 2016. "Optimization of dual-loop exhaust gas recirculation splitting for a light-duty diesel engine with model-based control," Applied Energy, Elsevier, vol. 181(C), pages 268-277.
    11. Thangaraja, J. & Kannan, C., 2016. "Effect of exhaust gas recirculation on advanced diesel combustion and alternate fuels - A review," Applied Energy, Elsevier, vol. 180(C), pages 169-184.
    12. Asad, Usman & Zheng, Ming, 2014. "Exhaust gas recirculation for advanced diesel combustion cycles," Applied Energy, Elsevier, vol. 123(C), pages 242-252.
    13. Giorgio Zamboni, 2018. "A Study on Combustion Parameters in an Automotive Turbocharged Diesel Engine," Energies, MDPI, vol. 11(10), pages 1-21, September.
    14. Lu, Zhen & Liu, Mengyu & Shi, Lei & Wang, Tianyou & Lu, Tianlong & Wang, Huaiyin, 2022. "Numerical research of the injected exhaust gas recirculation strategy on a two-stroke low-speed marine diesel engine," Energy, Elsevier, vol. 244(PA).
    15. Gu, Jie & Wang, Yingyuan & Hu, Jiancun & Zhang, Kun & Shi, Lei & Deng, Kangyao, 2024. "Real-time prediction of fuel consumption and emissions based on deep autoencoding support vector regression for cylinder pressure-based feedback control of marine diesel engines," Energy, Elsevier, vol. 300(C).
    16. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Mamat, Rizalman & Sidik, Nor Azwadi Che & Azmi, W.H., 2017. "The effect of combustion management on diesel engine emissions fueled with biodiesel-diesel blends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 307-331.
    17. Zhu, Dengting & Zheng, Xinqian, 2019. "Fuel consumption and emission characteristics in asymmetric twin-scroll turbocharged diesel engine with two exhaust gas recirculation circuits," Applied Energy, Elsevier, vol. 238(C), pages 985-995.
    18. Iqbal, Rashid & Liu, Yancheng & Zeng, Yuji & Zhang, Qinjin & Zeeshan, Muhammad, 2024. "Comparative study based on techno-economics analysis of different shipboard microgrid systems comprising PV/wind/fuel cell/battery/diesel generator with two battery technologies: A step toward green m," Renewable Energy, Elsevier, vol. 221(C).
    19. Yuan, Yupeng & Wang, Jixiang & Yan, Xinping & Shen, Boyang & Long, Teng, 2020. "A review of multi-energy hybrid power system for ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    20. Wenyu Gu & Wanhua Su, 2023. "Study on the Effects of Exhaust Gas Recirculation and Fuel Injection Strategy on Transient Process Performance of Diesel Engines," Sustainability, MDPI, vol. 15(16), pages 1-21, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:165:y:2016:i:c:p:839-848. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.