IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v41y2012icp636-643.html
   My bibliography  Save this article

Reducing automotive emissions—The potentials of combustion engine technologies and the power of policy

Author

Listed:
  • Berggren, Christian
  • Magnusson, Thomas

Abstract

Reducing transport emissions, in particular vehicular emissions, is a key element for mitigating the risks of climate change. In much of the academic and public discourse the focus has been on alternative vehicle technologies and fuels (e.g. electric cars, fuel cells and hydrogen), whereas vehicles based on internal combustion engines have been perceived as close to their development limits. This paper offers a different perspective by demonstrating the accelerated improvement processes taking place in established combustion technologies as a result of a new competition between manufacturers and technologies, encouraged both by more stringent EU legislation and new CAFE levels in the US. The short-term perspective is complemented by an analysis of future improvement potentials in internal combustion technologies, which may be realized if efficient regulation is in place. Based on a comparison of four different regulatory approaches, the paper identifies the need for a long-term technology-neutral framework with stepwise increasing stringencies, arguing that this will encourage continual innovation and diffusion in the most effective way.

Suggested Citation

  • Berggren, Christian & Magnusson, Thomas, 2012. "Reducing automotive emissions—The potentials of combustion engine technologies and the power of policy," Energy Policy, Elsevier, vol. 41(C), pages 636-643.
  • Handle: RePEc:eee:enepol:v:41:y:2012:i:c:p:636-643
    DOI: 10.1016/j.enpol.2011.11.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421511009025
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2011.11.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zervas, Efthimios, 2010. "Analysis of the CO2 emissions and of the other characteristics of the European market of new passenger cars. 2. Segment analysis," Energy Policy, Elsevier, vol. 38(10), pages 5426-5441, October.
    2. Knecht, Walter, 2008. "Diesel engine development in view of reduced emission standards," Energy, Elsevier, vol. 33(2), pages 264-271.
    3. Kromer, Matthew A. & Bandivadekar, Anup & Evans, Christopher, 2010. "Long-term greenhouse gas emission and petroleum reduction goals: Evolutionary pathways for the light-duty vehicle sector," Energy, Elsevier, vol. 35(1), pages 387-397.
    4. Fontaras, Georgios & Samaras, Zissis, 2010. "On the way to 130 g CO2/km--Estimating the future characteristics of the average European passenger car," Energy Policy, Elsevier, vol. 38(4), pages 1826-1833, April.
    5. Taylor, Alex M.K.P., 2008. "Science review of internal combustion engines," Energy Policy, Elsevier, vol. 36(12), pages 4657-4667, December.
    6. Offer, G.J. & Howey, D. & Contestabile, M. & Clague, R. & Brandon, N.P., 2010. "Comparative analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system," Energy Policy, Elsevier, vol. 38(1), pages 24-29, January.
    7. Christian Berggren & Thomas Magnusson & Dedy Sushandoyo, 2009. "Hybrids, diesel or both? The forgotten technological competition for sustainable solutions in the global automotive industry," International Journal of Automotive Technology and Management, Inderscience Enterprises Ltd, vol. 9(2), pages 148-173.
    8. Schoots, K. & Kramer, G.J. & van der Zwaan, B.C.C., 2010. "Technology learning for fuel cells: An assessment of past and potential cost reductions," Energy Policy, Elsevier, vol. 38(6), pages 2887-2897, June.
    9. Clerides, Sofronis & Zachariadis, Theodoros, 2008. "The effect of standards and fuel prices on automobile fuel economy: An international analysis," Energy Economics, Elsevier, vol. 30(5), pages 2657-2672, September.
    10. Doucette, Reed T. & McCulloch, Malcolm D., 2011. "Modeling the CO2 emissions from battery electric vehicles given the power generation mixes of different countries," Energy Policy, Elsevier, vol. 39(2), pages 803-811, February.
    11. Cuenot, François, 2009. "CO2 emissions from new cars and vehicle weight in Europe; How the EU regulation could have been avoided and how to reach it?," Energy Policy, Elsevier, vol. 37(10), pages 3832-3842, October.
    12. Zervas, Efthimios, 2010. "Analysis of CO2 emissions and of the other characteristics of the European market of new passenger cars. 3. Brands analysis," Energy Policy, Elsevier, vol. 38(10), pages 5442-5456, October.
    13. Sperling, Daniel & Gordon, Deborah, 2009. "Two Billion Cars: Driving Toward Sustainability," OUP Catalogue, Oxford University Press, number 9780195376647.
    14. David L. Greene, 2010. "Why the New Market for New Passenger Cars Generally Undervalues Fuel Economy," OECD/ITF Joint Transport Research Centre Discussion Papers 2010/6, OECD Publishing.
    15. Adam Jaffe & Richard Newell & Robert Stavins, 2002. "Environmental Policy and Technological Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 22(1), pages 41-70, June.
    16. Thiel, Christian & Perujo, Adolfo & Mercier, Arnaud, 2010. "Cost and CO2 aspects of future vehicle options in Europe under new energy policy scenarios," Energy Policy, Elsevier, vol. 38(11), pages 7142-7151, November.
    17. Schäfer, Andreas & Heywood, John B. & Weiss, Malcolm A., 2006. "Future fuel cell and internal combustion engine automobile technologies: A 25-year life cycle and fleet impact assessment," Energy, Elsevier, vol. 31(12), pages 2064-2087.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bergek, Anna & Berggren, Christian, 2014. "The impact of environmental policy instruments on innovation: A review of energy and automotive industry studies," Ecological Economics, Elsevier, vol. 106(C), pages 112-123.
    2. G. Marletto, 2013. "Car and the city: Socio-technical pathways to 2030," Working Paper CRENoS 201306, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    3. Pasaoglu, Guzay & Honselaar, Michel & Thiel, Christian, 2012. "Potential vehicle fleet CO2 reductions and cost implications for various vehicle technology deployment scenarios in Europe," Energy Policy, Elsevier, vol. 40(C), pages 404-421.
    4. Demeulenaere, Xavier, 2019. "The use of automotive fleets to support the diffusion of Alternative Fuel Vehicles: A Rapid Evidence Assessment of barriers and decision mechanisms," Research in Transportation Economics, Elsevier, vol. 76(C).
    5. Voltes-Dorta, Augusto & Perdiguero, Jordi & Jiménez, Juan Luis, 2013. "Are car manufacturers on the way to reduce CO2 emissions?: A DEA approach," Energy Economics, Elsevier, vol. 38(C), pages 77-86.
    6. Marletto, Gerardo, 2014. "Car and the city: Socio-technical transition pathways to 2030," Technological Forecasting and Social Change, Elsevier, vol. 87(C), pages 164-178.
    7. Siskos, Pelopidas & Capros, Pantelis & De Vita, Alessia, 2015. "CO2 and energy efficiency car standards in the EU in the context of a decarbonisation strategy: A model-based policy assessment," Energy Policy, Elsevier, vol. 84(C), pages 22-34.
    8. Zhao, Jinxing, 2017. "Research and application of over-expansion cycle (Atkinson and Miller) engines – A review," Applied Energy, Elsevier, vol. 185(P1), pages 300-319.
    9. Fontaras, Georgios & Dilara, Panagiota, 2012. "The evolution of European passenger car characteristics 2000–2010 and its effects on real-world CO2 emissions and CO2 reduction policy," Energy Policy, Elsevier, vol. 49(C), pages 719-730.
    10. Lei Yang & Caixia Hao & Yina Chai, 2018. "Life Cycle Assessment of Commercial Delivery Trucks: Diesel, Plug-In Electric, and Battery-Swap Electric," Sustainability, MDPI, vol. 10(12), pages 1-21, December.
    11. van der Vooren & Eric Brouillat, 2013. "Evaluating CO2 reduction policy portfolios in the automotive sector," Innovation Studies Utrecht (ISU) working paper series 13-01, Utrecht University, Department of Innovation Studies, revised Feb 2013.
    12. Bampatsou, Christina & Zervas, Efthimios, 2011. "Critique of the regulatory limitations of exhaust CO2 emissions from passenger cars in European union," Energy Policy, Elsevier, vol. 39(12), pages 7794-7802.
    13. Varga, Bogdan Ovidiu, 2013. "Electric vehicles, primary energy sources and CO2 emissions: Romanian case study," Energy, Elsevier, vol. 49(C), pages 61-70.
    14. González, Rosa Marina & Marrero, Gustavo A. & Rodríguez-López, Jesús & Marrero, Ángel S., 2019. "Analyzing CO2 emissions from passenger cars in Europe: A dynamic panel data approach," Energy Policy, Elsevier, vol. 129(C), pages 1271-1281.
    15. Barbieri, Nicolò, 2015. "Investigating the impacts of technological position and European environmental regulation on green automotive patent activity," Ecological Economics, Elsevier, vol. 117(C), pages 140-152.
    16. Rosal, Ignacio del, 2022. "European dieselization: Policy insights from EU car trade," Transport Policy, Elsevier, vol. 115(C), pages 181-194.
    17. Samuel Pelletier & Ola Jabali & Gilbert Laporte, 2016. "50th Anniversary Invited Article—Goods Distribution with Electric Vehicles: Review and Research Perspectives," Transportation Science, INFORMS, vol. 50(1), pages 3-22, February.
    18. Shafiei, Ehsan & Davidsdottir, Brynhildur & Leaver, Jonathan & Stefansson, Hlynur & Asgeirsson, Eyjolfur Ingi, 2015. "Comparative analysis of hydrogen, biofuels and electricity transitional pathways to sustainable transport in a renewable-based energy system," Energy, Elsevier, vol. 83(C), pages 614-627.
    19. Aileen Lam, 2013. "Projections of future emissions and energy use from passenger cars as a result of policies in the EU with a dynamic model of technological change," 4CMR Working Paper Series 005, University of Cambridge, Department of Land Economy, Cambridge Centre for Climate Change Mitigation Research.
    20. Marrero, Ángel S. & Marrero, Gustavo A. & González, Rosa Marina & Rodríguez-López, Jesús, 2021. "Convergence in road transport CO2 emissions in Europe," Energy Economics, Elsevier, vol. 99(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:41:y:2012:i:c:p:636-643. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.