IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v27y2002i8p757-775.html
   My bibliography  Save this article

Optimization of variable valve timing for maximizing performance of an unthrottled SI engine—a theoretical study

Author

Listed:
  • Sher, E.
  • Bar-Kohany, T.

Abstract

Previous investigations have demonstrated that improvements in gasoline engine performance can be accomplished if the valve timing is variable. In this work valve timing strategies for maximizing engine torque and minimizing bsfc in terms of the exhaust opening (EO), intake opening (IO) and intake closing (IC) timings of a commercial SI engine are studied. The MICE (Modeling Internal Combustion Engines) computer program, which simulates an actual SI cycle, has been used. Overall performance characteristics such as the cycle efficiency, engine power, and exhaust gas composition are calculated. The model has been calibrated with data obtained from a measured indicator diagram, and validated against the overall performances of the engine. It is concluded that when both valves and spark timings are optimized, the optimal timing of each valve, depends apparently linearly on the engine load, linearly (in a good approximation) on the engine speed, while the slope depends in a weak manner on the engine load. When VVT is employed, the maximum engine power has been increased by 6%, and the engine bsfc has been decreased by 13%. The maximum torque has been shifted towards a lower engine speed. The present results are summarized as working maps for the engine designer. These show the influence of the intake and exhaust valve timing on the engine performance at the entire range of operation conditions (engine load and speed).

Suggested Citation

  • Sher, E. & Bar-Kohany, T., 2002. "Optimization of variable valve timing for maximizing performance of an unthrottled SI engine—a theoretical study," Energy, Elsevier, vol. 27(8), pages 757-775.
  • Handle: RePEc:eee:energy:v:27:y:2002:i:8:p:757-775
    DOI: 10.1016/S0360-5442(02)00022-1
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544202000221
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0360-5442(02)00022-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Lei & Cui, Yi & Deng, Kangyao & Peng, Haiyong & Chen, Yuanyuan, 2006. "Study of low emission homogeneous charge compression ignition (HCCI) engine using combined internal and external exhaust gas recirculation (EGR)," Energy, Elsevier, vol. 31(14), pages 2665-2676.
    2. Gölcü, Mustafa & Sekmen, Yakup & ErduranlI, Perihan & Sahir Salman, M., 2005. "Artificial neural-network based modeling of variable valve-timing in a spark-ignition engine," Applied Energy, Elsevier, vol. 81(2), pages 187-197, June.
    3. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Yu, Mingzhe & Wang, Yan, 2023. "Investigation and multi-objective optimization of vehicle engine-organic Rankine cycle (ORC) combined system in different driving conditions," Energy, Elsevier, vol. 263(PB).
    4. Li, Yangtao & Khajepour, Amir & Devaud, Cécile & Liu, Kaimin, 2017. "Power and fuel economy optimizations of gasoline engines using hydraulic variable valve actuation system," Applied Energy, Elsevier, vol. 206(C), pages 577-593.
    5. Tripathy, Srinibas & Das, Abhimanyu & Sahu, Balram & Srivastava, Dhananjay Kumar, 2020. "Electro-pneumatic variable valve actuation system for camless engine: Part I-development and characterization," Energy, Elsevier, vol. 193(C).
    6. Li, Yangtao & Khajepour, Amir & Devaud, Cécile, 2018. "Realization of variable Otto-Atkinson cycle using variable timing hydraulic actuated valve train for performance and efficiency improvements in unthrottled gasoline engines," Applied Energy, Elsevier, vol. 222(C), pages 199-215.
    7. Payri, Francisco & López, José Javier & Martín, Jaime & Carreño, Ricardo, 2018. "Improvement and application of a methodology to perform the Global Energy Balance in internal combustion engines. Part 1: Global Energy Balance tool development and calibration," Energy, Elsevier, vol. 152(C), pages 666-681.
    8. Tadros, M. & Ventura, M. & Guedes Soares, C., 2019. "Optimization procedure to minimize fuel consumption of a four-stroke marine turbocharged diesel engine," Energy, Elsevier, vol. 168(C), pages 897-908.
    9. Deng, Banglin & Yang, Jing & Zhang, Daming & Feng, Renhua & Fu, Jianqin & Liu, Jingping & Li, Ke & Liu, Xiaoqiang, 2013. "The challenges and strategies of butanol application in conventional engines: The sensitivity study of ignition and valve timing," Applied Energy, Elsevier, vol. 108(C), pages 248-260.
    10. Qian, Yejian & Gong, Zhen & Zhuang, Yuan & Wang, Chunmei & Zhao, Peng, 2018. "Mechanism study of scavenging process and its effect on combustion characteristics in a boosted GDI engine," Energy, Elsevier, vol. 165(PA), pages 246-266.
    11. Gao, Jianbing & Tian, Guohong & Jenner, Phil & Burgess, Max & Emhardt, Simon, 2020. "Preliminary explorations of the performance of a novel small scale opposed rotary piston engine," Energy, Elsevier, vol. 190(C).
    12. Adrian Clenci & Adrian Bîzîiac & Pierre Podevin & Georges Descombes & Michael Deligant & Rodica Niculescu, 2013. "Idle Operation with Low Intake Valve Lift in a Port Fuel Injected Engine," Energies, MDPI, vol. 6(6), pages 1-18, June.
    13. Martín, Jaime & Novella, Ricardo & García, Antonio & Carreño, Ricardo & Heuser, Benedikt & Kremer, Florian & Pischinger, Stefan, 2016. "Thermal analysis of a light-duty CI engine operating with diesel-gasoline dual-fuel combustion mode," Energy, Elsevier, vol. 115(P1), pages 1305-1319.
    14. Yuan, Zhipeng & Fu, Jianqin & Liu, Qi & Ma, Yinjie & Zhan, Zhangsong, 2018. "Quantitative study on influence factors of power performance of variable valve timing (VVT) engines and correction of its governing equation," Energy, Elsevier, vol. 157(C), pages 314-326.
    15. Zhao, Jinxing, 2017. "Research and application of over-expansion cycle (Atkinson and Miller) engines – A review," Applied Energy, Elsevier, vol. 185(P1), pages 300-319.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:27:y:2002:i:8:p:757-775. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.