IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i14p5414-d1195363.html
   My bibliography  Save this article

A Computationally Efficient Approach for the State-of-Health Estimation of Lithium-Ion Batteries

Author

Listed:
  • Haochen Qin

    (National Key Laboratory of Electromagnetic Energy, Naval University of Engineering, Wuhan 430033, China)

  • Xuexin Fan

    (National Key Laboratory of Electromagnetic Energy, Naval University of Engineering, Wuhan 430033, China)

  • Yaxiang Fan

    (National Key Laboratory of Electromagnetic Energy, Naval University of Engineering, Wuhan 430033, China)

  • Ruitian Wang

    (National Key Laboratory of Electromagnetic Energy, Naval University of Engineering, Wuhan 430033, China)

  • Qianyi Shang

    (National Key Laboratory of Electromagnetic Energy, Naval University of Engineering, Wuhan 430033, China)

  • Dong Zhang

    (National Key Laboratory of Electromagnetic Energy, Naval University of Engineering, Wuhan 430033, China)

Abstract

High maintenance costs and safety risks due to lithium-ion battery degeneration have significantly and seriously restricted the application potential of batteries. Thus, this paper proposes an efficient calculation approach for state of health (SOH) estimation in lithium-ion batteries that can be implemented in battery management system (BMS) hardware. First, from the variables of the charge profile, only the complete voltage data is taken as the input to represent the complete aging characteristics of the batteries while limiting the computational complexity. Then, this paper combines the light gradient boosting machine (LightGBM) and weighted quantile regression (WQR) methods to learn a nonlinear mapping between the measurable characteristics and the SOH. A confidence interval is applied to quantify the uncertainty of the SOH estimate, and the model is called LightGBM-WQR. Finally, two public datasets are employed to verify the proposed approach. The proposed LightGBM-WQR model achieves high accuracy in its SOH estimation, and the average absolute error (MAE) of all cells is limited to 1.57%. In addition, the average computation time of the model is less than 0.8 ms for ten runs. This work shows that the model is effective and rapid in its SOH estimation. The SOH estimation model has also been tested on the edge computing module as a possible innovation to replace the BMS bearer computing function, which provides tentative solutions for online practical applications such as energy storage systems and electric vehicles.

Suggested Citation

  • Haochen Qin & Xuexin Fan & Yaxiang Fan & Ruitian Wang & Qianyi Shang & Dong Zhang, 2023. "A Computationally Efficient Approach for the State-of-Health Estimation of Lithium-Ion Batteries," Energies, MDPI, vol. 16(14), pages 1-23, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5414-:d:1195363
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/14/5414/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/14/5414/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Zengkai & Zeng, Shengkui & Guo, Jianbin & Qin, Taichun, 2019. "State of health estimation of lithium-ion batteries based on the constant voltage charging curve," Energy, Elsevier, vol. 167(C), pages 661-669.
    2. Bi, Jun & Zhang, Ting & Yu, Haiyang & Kang, Yanqiong, 2016. "State-of-health estimation of lithium-ion battery packs in electric vehicles based on genetic resampling particle filter," Applied Energy, Elsevier, vol. 182(C), pages 558-568.
    3. Khaleghi, Sahar & Hosen, Md Sazzad & Karimi, Danial & Behi, Hamidreza & Beheshti, S. Hamidreza & Van Mierlo, Joeri & Berecibar, Maitane, 2022. "Developing an online data-driven approach for prognostics and health management of lithium-ion batteries," Applied Energy, Elsevier, vol. 308(C).
    4. Yu, Jianbo, 2018. "State of health prediction of lithium-ion batteries: Multiscale logic regression and Gaussian process regression ensemble," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 82-95.
    5. Shuxiang Song & Chen Fei & Haiying Xia, 2020. "Lithium-Ion Battery SOH Estimation Based on XGBoost Algorithm with Accuracy Correction," Energies, MDPI, vol. 13(4), pages 1-13, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiuli Wang & Junkai Wei & Fushuan Wen & Kai Wang, 2023. "A Trading Mode Based on the Management of Residual Electric Energy in Electric Vehicles," Energies, MDPI, vol. 16(17), pages 1-23, August.
    2. Jiang, Fusheng & Ren, Yi & Tang, Ting & Wu, Zeyu & Xia, Quan & Sun, Bo & Yang, Dezhen, 2024. "An adaptive semi-supervised self-learning method for online state of health estimation of lithium-ion batteries," Energy, Elsevier, vol. 305(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deng, Yuanwang & Ying, Hejie & E, Jiaqiang & Zhu, Hao & Wei, Kexiang & Chen, Jingwei & Zhang, Feng & Liao, Gaoliang, 2019. "Feature parameter extraction and intelligent estimation of the State-of-Health of lithium-ion batteries," Energy, Elsevier, vol. 176(C), pages 91-102.
    2. Wei, Yupeng & Wu, Dazhong, 2023. "Prediction of state of health and remaining useful life of lithium-ion battery using graph convolutional network with dual attention mechanisms," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    3. Lai, Xin & Yao, Yi & Tang, Xiaopeng & Zheng, Yuejiu & Zhou, Yuanqiang & Sun, Yuedong & Gao, Furong, 2023. "Voltage profile reconstruction and state of health estimation for lithium-ion batteries under dynamic working conditions," Energy, Elsevier, vol. 282(C).
    4. Zhao, Hongqian & Chen, Zheng & Shu, Xing & Shen, Jiangwei & Lei, Zhenzhen & Zhang, Yuanjian, 2023. "State of health estimation for lithium-ion batteries based on hybrid attention and deep learning," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    5. Khaleghi, Sahar & Hosen, Md Sazzad & Karimi, Danial & Behi, Hamidreza & Beheshti, S. Hamidreza & Van Mierlo, Joeri & Berecibar, Maitane, 2022. "Developing an online data-driven approach for prognostics and health management of lithium-ion batteries," Applied Energy, Elsevier, vol. 308(C).
    6. Li, Kailing & Xie, Naiming, 2024. "Battery health prognostics based on improved incremental capacity using a hybrid grey modelling and Gaussian process regression," Energy, Elsevier, vol. 303(C).
    7. Ming Zhang & Dongfang Yang & Jiaxuan Du & Hanlei Sun & Liwei Li & Licheng Wang & Kai Wang, 2023. "A Review of SOH Prediction of Li-Ion Batteries Based on Data-Driven Algorithms," Energies, MDPI, vol. 16(7), pages 1-28, March.
    8. Chang, Chun & Wu, Yutong & Jiang, Jiuchun & Jiang, Yan & Tian, Aina & Li, Taiyu & Gao, Yang, 2022. "Prognostics of the state of health for lithium-ion battery packs in energy storage applications," Energy, Elsevier, vol. 239(PB).
    9. Yang, Duo & Wang, Yujie & Pan, Rui & Chen, Ruiyang & Chen, Zonghai, 2018. "State-of-health estimation for the lithium-ion battery based on support vector regression," Applied Energy, Elsevier, vol. 227(C), pages 273-283.
    10. Li, Guanzheng & Li, Bin & Li, Chao & Wang, Shuai, 2023. "State-of-health rapid estimation for lithium-ion battery based on an interpretable stacking ensemble model with short-term voltage profiles," Energy, Elsevier, vol. 263(PE).
    11. Wei, Yupeng & Wu, Dazhong & Terpenny, Janis, 2024. "Remaining useful life prediction using graph convolutional attention networks with temporal convolution-aware nested residual connections," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    12. Zhang, Jiusi & Jiang, Yuchen & Li, Xiang & Huo, Mingyi & Luo, Hao & Yin, Shen, 2022. "An adaptive remaining useful life prediction approach for single battery with unlabeled small sample data and parameter uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    13. Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).
    14. Dai, Houde & Wang, Jiaxin & Huang, Yiyang & Lai, Yuan & Zhu, Liqi, 2024. "Lightweight state-of-health estimation of lithium-ion batteries based on statistical feature optimization," Renewable Energy, Elsevier, vol. 222(C).
    15. Shuo Sun & Junzhong Sun & Zongliang Wang & Zhiyong Zhou & Wei Cai, 2022. "Prediction of Battery SOH by CNN-BiLSTM Network Fused with Attention Mechanism," Energies, MDPI, vol. 15(12), pages 1-17, June.
    16. Yang, Jufeng & Cai, Yingfeng & Pan, Chaofeng & Mi, Chris, 2019. "A novel resistor-inductor network-based equivalent circuit model of lithium-ion batteries under constant-voltage charging condition," Applied Energy, Elsevier, vol. 254(C).
    17. Cao, Mengda & Zhang, Tao & Liu, Yajie & Zhang, Yajun & Wang, Yu & Li, Kaiwen, 2022. "An ensemble learning prognostic method for capacity estimation of lithium-ion batteries based on the V-IOWGA operator," Energy, Elsevier, vol. 257(C).
    18. Xingxing Wang & Peilin Ye & Shengren Liu & Yu Zhu & Yelin Deng & Yinnan Yuan & Hongjun Ni, 2023. "Research Progress of Battery Life Prediction Methods Based on Physical Model," Energies, MDPI, vol. 16(9), pages 1-20, April.
    19. Yong Tian & Qianyuan Dong & Jindong Tian & Xiaoyu Li, 2023. "Capacity Estimation of Lithium-Ion Batteries Based on Multiple Small Voltage Sections and BP Neural Networks," Energies, MDPI, vol. 16(2), pages 1-18, January.
    20. Li, Penghua & Zhang, Zijian & Grosu, Radu & Deng, Zhongwei & Hou, Jie & Rong, Yujun & Wu, Rui, 2022. "An end-to-end neural network framework for state-of-health estimation and remaining useful life prediction of electric vehicle lithium batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5414-:d:1195363. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.