IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v194y2017icp609-616.html
   My bibliography  Save this article

A novel H∞ and EKF joint estimation method for determining the center of gravity position of electric vehicles

Author

Listed:
  • Lin, Cheng
  • Gong, Xinle
  • Xiong, Rui
  • Cheng, Xingqun

Abstract

In order to ensure the safety and reliability of electric vehicles (EVs), the accurate center of gravity (CG) position estimation is of great significance. In this study, a novel approach based on combined H∞–extended Kalman filter (H∞–EKF) is proposed. Utilizing the characteristics of the wheel torque controlled independently, the estimation method only requires the longitudinal stimulus of vehicles and avoids other possible disadvantageous stimulus, such as the vehicle yaw or roll motion. Furthermore, additional parameters (suspension parameters, tire parameters, etc.) are unessential. To implement this estimation algorithm, a simplified vehicle dynamics model is applied to the filter formulation considering of the front wheel speed, the rear wheel speed and the longitudinal velocity of the vehicle. The designed estimator consists of two layers: the H∞ estimator is employed to filter states by means of minimizing the influence of unexpected noise whose statistics are unknown. Simultaneously, the other EKF estimator uses the states derived by the former filter to identify the CG position of the vehicle. Results indicate that the performance of the H∞ filter is superior to the standard KF and the proposed synthetic estimation algorithm is able to estimate the longitudinal location and the height of CG with acceptable accuracy.

Suggested Citation

  • Lin, Cheng & Gong, Xinle & Xiong, Rui & Cheng, Xingqun, 2017. "A novel H∞ and EKF joint estimation method for determining the center of gravity position of electric vehicles," Applied Energy, Elsevier, vol. 194(C), pages 609-616.
  • Handle: RePEc:eee:appene:v:194:y:2017:i:c:p:609-616
    DOI: 10.1016/j.apenergy.2016.05.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916306341
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.05.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Song, Ziyou & Hofmann, Heath & Li, Jianqiu & Han, Xuebing & Ouyang, Minggao, 2015. "Optimization for a hybrid energy storage system in electric vehicles using dynamic programing approach," Applied Energy, Elsevier, vol. 139(C), pages 151-162.
    2. Soylu, Seref, 2014. "The effects of urban driving conditions on the operating characteristics of conventional and hybrid electric city buses," Applied Energy, Elsevier, vol. 135(C), pages 472-482.
    3. H. Imine & L. Fridman & T. Madani, 2015. "Identification of vehicle parameters and estimation of vertical forces," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(16), pages 2996-3009, December.
    4. Xiong, Rui & Sun, Fengchun & Chen, Zheng & He, Hongwen, 2014. "A data-driven multi-scale extended Kalman filtering based parameter and state estimation approach of lithium-ion olymer battery in electric vehicles," Applied Energy, Elsevier, vol. 113(C), pages 463-476.
    5. Sun, Fengchun & Xiong, Rui & He, Hongwen, 2016. "A systematic state-of-charge estimation framework for multi-cell battery pack in electric vehicles using bias correction technique," Applied Energy, Elsevier, vol. 162(C), pages 1399-1409.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaogang Wu & Tianze Wang, 2017. "Optimization of Battery Capacity Decay for Semi-Active Hybrid Energy Storage System Equipped on Electric City Bus," Energies, MDPI, vol. 10(6), pages 1-20, June.
    2. Li, Liang & Li, Xujian & Wang, Xiangyu & Song, Jian & He, Kai & Li, Chenfeng, 2016. "Analysis of downshift’s improvement to energy efficiency of an electric vehicle during regenerative braking," Applied Energy, Elsevier, vol. 176(C), pages 125-137.
    3. Ma, Zeyu & Yang, Ruixin & Wang, Zhenpo, 2019. "A novel data-model fusion state-of-health estimation approach for lithium-ion batteries," Applied Energy, Elsevier, vol. 237(C), pages 836-847.
    4. He, Hongwen & Xiong, Rui & Peng, Jiankun, 2016. "Real-time estimation of battery state-of-charge with unscented Kalman filter and RTOS μCOS-II platform," Applied Energy, Elsevier, vol. 162(C), pages 1410-1418.
    5. Wei, Zhongbao & Zhao, Jiyun & Ji, Dongxu & Tseng, King Jet, 2017. "A multi-timescale estimator for battery state of charge and capacity dual estimation based on an online identified model," Applied Energy, Elsevier, vol. 204(C), pages 1264-1274.
    6. Zheng Chen & Xiaoyu Li & Jiangwei Shen & Wensheng Yan & Renxin Xiao, 2016. "A Novel State of Charge Estimation Algorithm for Lithium-Ion Battery Packs of Electric Vehicles," Energies, MDPI, vol. 9(9), pages 1-15, September.
    7. Tang, Xiaopeng & Liu, Boyang & Lv, Zhou & Gao, Furong, 2017. "Observer based battery SOC estimation: Using multi-gain-switching approach," Applied Energy, Elsevier, vol. 204(C), pages 1275-1283.
    8. Yang, Ruixin & Xiong, Rui & He, Hongwen & Mu, Hao & Wang, Chun, 2017. "A novel method on estimating the degradation and state of charge of lithium-ion batteries used for electrical vehicles," Applied Energy, Elsevier, vol. 207(C), pages 336-345.
    9. Li, Junqiu & Wang, Yihe & Chen, Jianwen & Zhang, Xiaopeng, 2017. "Study on energy management strategy and dynamic modeling for auxiliary power units in range-extended electric vehicles," Applied Energy, Elsevier, vol. 194(C), pages 363-375.
    10. Bi, Jun & Zhang, Ting & Yu, Haiyang & Kang, Yanqiong, 2016. "State-of-health estimation of lithium-ion battery packs in electric vehicles based on genetic resampling particle filter," Applied Energy, Elsevier, vol. 182(C), pages 558-568.
    11. Ye, Min & Guo, Hui & Xiong, Rui & Yu, Quanqing, 2018. "A double-scale and adaptive particle filter-based online parameter and state of charge estimation method for lithium-ion batteries," Energy, Elsevier, vol. 144(C), pages 789-799.
    12. Lin, Cheng & Yu, Quanqing & Xiong, Rui & Wang, Le Yi, 2017. "A study on the impact of open circuit voltage tests on state of charge estimation for lithium-ion batteries," Applied Energy, Elsevier, vol. 205(C), pages 892-902.
    13. Dafen Chen & Jiuchun Jiang & Xue Li & Zhanguo Wang & Weige Zhang, 2016. "Modeling of a Pouch Lithium Ion Battery Using a Distributed Parameter Equivalent Circuit for Internal Non-Uniformity Analysis," Energies, MDPI, vol. 9(11), pages 1-18, October.
    14. Xiaofeng Ding & Jiawei Cheng & Feida Chen, 2017. "Impact of Silicon Carbide Devices on the Powertrain Systems in Electric Vehicles," Energies, MDPI, vol. 10(4), pages 1-17, April.
    15. Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    16. Zhu, Rui & Duan, Bin & Zhang, Chenghui & Gong, Sizhao, 2019. "Accurate lithium-ion battery modeling with inverse repeat binary sequence for electric vehicle applications," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    17. Xiaogang Wu & Zhe Chen & Zhiyang Wang, 2017. "Analysis of Low Temperature Preheating Effect Based on Battery Temperature-Rise Model," Energies, MDPI, vol. 10(8), pages 1-15, August.
    18. Mu, Hao & Xiong, Rui & Zheng, Hongfei & Chang, Yuhua & Chen, Zeyu, 2017. "A novel fractional order model based state-of-charge estimation method for lithium-ion battery," Applied Energy, Elsevier, vol. 207(C), pages 384-393.
    19. Oh, Ki-Yong & Epureanu, Bogdan I., 2016. "Characterization and modeling of the thermal mechanics of lithium-ion battery cells," Applied Energy, Elsevier, vol. 178(C), pages 633-646.
    20. P. S. Praveena Krishna & Jayalakshmi N. Sabhahit & Vidya S. Rao & Amit Saraswat & Hannah Chaplin Laugaland & Pramod Bhat Nempu, 2024. "Optimizing EV Powertrain Performance and Sustainability through Constraint Prioritization in Nonlinear Model Predictive Control of Semi-Active Bidirectional DC-DC Converter with HESS," Sustainability, MDPI, vol. 16(18), pages 1-21, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:194:y:2017:i:c:p:609-616. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.