IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i9p2612-d548132.html
   My bibliography  Save this article

A Method for Battery Health Estimation Based on Charging Time Segment

Author

Listed:
  • Shao-Xun Liu

    (State Key Laboratory of Structural Analysis for Industrial Equipment, Faculty of Vehicle Engineering and Mechanics, School of Automotive Engineering, Dalian University of Technology, Dalian 116024, China)

  • Ya-Fu Zhou

    (State Key Laboratory of Structural Analysis for Industrial Equipment, Faculty of Vehicle Engineering and Mechanics, School of Automotive Engineering, Dalian University of Technology, Dalian 116024, China)

  • Yan-Liang Liu

    (State Key Laboratory of Structural Analysis for Industrial Equipment, Faculty of Vehicle Engineering and Mechanics, School of Automotive Engineering, Dalian University of Technology, Dalian 116024, China)

  • Jing Lian

    (State Key Laboratory of Structural Analysis for Industrial Equipment, Faculty of Vehicle Engineering and Mechanics, School of Automotive Engineering, Dalian University of Technology, Dalian 116024, China)

  • Li-Jian Huang

    (State Key Laboratory of Structural Analysis for Industrial Equipment, Faculty of Vehicle Engineering and Mechanics, School of Automotive Engineering, Dalian University of Technology, Dalian 116024, China)

Abstract

The problem of low accuracy and low convenience in the existing state of health (SOH) estimation method for vehicle lithium-ion batteries has become one of the important problems in the electric vehicle field. This paper proposes an improved cuckoo search particle filter (ICS-PF) algorithm based on a charging time segment from equal voltage data to estimate battery health status. Appropriate voltage ranges of charging time segments are selected according to the battery charging law, and in the meantime, the charging time segments are collected as a health indicator to establish the corresponding relationship with battery capacity attenuation value. An improved cuckoo search particle filter algorithm based on the traditional particle filter (PF) and cuckoo search (CS) algorithm is proposed by enhancing the search step size and discovery probability to estimate the capacity attenuation. The estimation result shows that this method is superior to the traditional particle filter and cuckoo search particle filter (CS-PF) method, as the maximum estimation error is less than 2%.

Suggested Citation

  • Shao-Xun Liu & Ya-Fu Zhou & Yan-Liang Liu & Jing Lian & Li-Jian Huang, 2021. "A Method for Battery Health Estimation Based on Charging Time Segment," Energies, MDPI, vol. 14(9), pages 1-15, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2612-:d:548132
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/9/2612/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/9/2612/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chang, Yang & Fang, Huajing, 2019. "A hybrid prognostic method for system degradation based on particle filter and relevance vector machine," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 51-63.
    2. Ng, Selina S.Y. & Xing, Yinjiao & Tsui, Kwok L., 2014. "A naive Bayes model for robust remaining useful life prediction of lithium-ion battery," Applied Energy, Elsevier, vol. 118(C), pages 114-123.
    3. Weng, Caihao & Feng, Xuning & Sun, Jing & Peng, Huei, 2016. "State-of-health monitoring of lithium-ion battery modules and packs via incremental capacity peak tracking," Applied Energy, Elsevier, vol. 180(C), pages 360-368.
    4. Meng, Jinhao & Cai, Lei & Stroe, Daniel-Ioan & Luo, Guangzhao & Sui, Xin & Teodorescu, Remus, 2019. "Lithium-ion battery state-of-health estimation in electric vehicle using optimized partial charging voltage profiles," Energy, Elsevier, vol. 185(C), pages 1054-1062.
    5. Dong, Guangzhong & Wei, Jingwen & Zhang, Chenbin & Chen, Zonghai, 2016. "Online state of charge estimation and open circuit voltage hysteresis modeling of LiFePO4 battery using invariant imbedding method," Applied Energy, Elsevier, vol. 162(C), pages 163-171.
    6. Hongwen He & Rui Xiong & Jinxin Fan, 2011. "Evaluation of Lithium-Ion Battery Equivalent Circuit Models for State of Charge Estimation by an Experimental Approach," Energies, MDPI, vol. 4(4), pages 1-17, March.
    7. Bi, Jun & Zhang, Ting & Yu, Haiyang & Kang, Yanqiong, 2016. "State-of-health estimation of lithium-ion battery packs in electric vehicles based on genetic resampling particle filter," Applied Energy, Elsevier, vol. 182(C), pages 558-568.
    8. Ma, Zeyu & Yang, Ruixin & Wang, Zhenpo, 2019. "A novel data-model fusion state-of-health estimation approach for lithium-ion batteries," Applied Energy, Elsevier, vol. 237(C), pages 836-847.
    9. Shen, Dongxu & Wu, Lifeng & Kang, Guoqing & Guan, Yong & Peng, Zhen, 2021. "A novel online method for predicting the remaining useful life of lithium-ion batteries considering random variable discharge current," Energy, Elsevier, vol. 218(C).
    10. Osnat Israeli, 2007. "A Shapley-based decomposition of the R-Square of a linear regression," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 5(2), pages 199-212, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hong, Jichao & Li, Kerui & Liang, Fengwei & Yang, Haixu & Zhang, Chi & Yang, Qianqian & Wang, Jiegang, 2024. "A novel state of health prediction method for battery system in real-world vehicles based on gated recurrent unit neural networks," Energy, Elsevier, vol. 289(C).
    2. Yang, Duo & Wang, Yujie & Pan, Rui & Chen, Ruiyang & Chen, Zonghai, 2018. "State-of-health estimation for the lithium-ion battery based on support vector regression," Applied Energy, Elsevier, vol. 227(C), pages 273-283.
    3. Zhang, Junwei & Zhang, Weige & Sun, Bingxiang & Zhang, Yanru & Fan, Xinyuan & Zhao, Bo, 2024. "A novel method of battery pack energy health estimation based on visual feature learning," Energy, Elsevier, vol. 293(C).
    4. Ozkurt, Celil & Camci, Fatih & Atamuradov, Vepa & Odorry, Christopher, 2016. "Integration of sampling based battery state of health estimation method in electric vehicles," Applied Energy, Elsevier, vol. 175(C), pages 356-367.
    5. Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).
    6. Thanh-Tung Nguyen & Abdul Basit Khan & Younghwi Ko & Woojin Choi, 2020. "An Accurate State of Charge Estimation Method for Lithium Iron Phosphate Battery Using a Combination of an Unscented Kalman Filter and a Particle Filter," Energies, MDPI, vol. 13(17), pages 1-15, September.
    7. Theodoros Kalogiannis & Md Sazzad Hosen & Mohsen Akbarzadeh Sokkeh & Shovon Goutam & Joris Jaguemont & Lu Jin & Geng Qiao & Maitane Berecibar & Joeri Van Mierlo, 2019. "Comparative Study on Parameter Identification Methods for Dual-Polarization Lithium-Ion Equivalent Circuit Model," Energies, MDPI, vol. 12(21), pages 1-35, October.
    8. Han, Xiaojuan & Wang, Zuran & Wei, Zixuan, 2021. "A novel approach for health management online-monitoring of lithium-ion batteries based on model-data fusion," Applied Energy, Elsevier, vol. 302(C).
    9. Jiang, Bo & Dai, Haifeng & Wei, Xuezhe, 2020. "Incremental capacity analysis based adaptive capacity estimation for lithium-ion battery considering charging condition," Applied Energy, Elsevier, vol. 269(C).
    10. Xiong, Rui & Tian, Jinpeng & Mu, Hao & Wang, Chun, 2017. "A systematic model-based degradation behavior recognition and health monitoring method for lithium-ion batteries," Applied Energy, Elsevier, vol. 207(C), pages 372-383.
    11. Shehzar Shahzad Sheikh & Mahnoor Anjum & Muhammad Abdullah Khan & Syed Ali Hassan & Hassan Abdullah Khalid & Adel Gastli & Lazhar Ben-Brahim, 2020. "A Battery Health Monitoring Method Using Machine Learning: A Data-Driven Approach," Energies, MDPI, vol. 13(14), pages 1-16, July.
    12. Zhao, Hongqian & Chen, Zheng & Shu, Xing & Shen, Jiangwei & Lei, Zhenzhen & Zhang, Yuanjian, 2023. "State of health estimation for lithium-ion batteries based on hybrid attention and deep learning," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    13. Kaizhi Liang & Zhaosheng Zhang & Peng Liu & Zhenpo Wang & Shangfeng Jiang, 2019. "Data-Driven Ohmic Resistance Estimation of Battery Packs for Electric Vehicles," Energies, MDPI, vol. 12(24), pages 1-17, December.
    14. Ruifeng Zhang & Bizhong Xia & Baohua Li & Yongzhi Lai & Weiwei Zheng & Huawen Wang & Wei Wang & Mingwang Wang, 2018. "Study on the Characteristics of a High Capacity Nickel Manganese Cobalt Oxide (NMC) Lithium-Ion Battery—An Experimental Investigation," Energies, MDPI, vol. 11(9), pages 1-20, August.
    15. Li, Junfu & Wang, Lixin & Lyu, Chao & Wang, Dafang & Pecht, Michael, 2019. "Parameter updating method of a simplified first principles-thermal coupling model for lithium-ion batteries," Applied Energy, Elsevier, vol. 256(C).
    16. Zhang, Meng & Hu, Tao & Wu, Lifeng & Kang, Guoqing & Guan, Yong, 2021. "A method for capacity estimation of lithium-ion batteries based on adaptive time-shifting broad learning system," Energy, Elsevier, vol. 231(C).
    17. Ruifeng Zhang & Bizhong Xia & Baohua Li & Libo Cao & Yongzhi Lai & Weiwei Zheng & Huawen Wang & Wei Wang, 2018. "State of the Art of Lithium-Ion Battery SOC Estimation for Electrical Vehicles," Energies, MDPI, vol. 11(7), pages 1-36, July.
    18. Dai, Haifeng & Jiang, Bo & Hu, Xiaosong & Lin, Xianke & Wei, Xuezhe & Pecht, Michael, 2021. "Advanced battery management strategies for a sustainable energy future: Multilayer design concepts and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    19. Li, Yuanyuan & Sheng, Hanmin & Cheng, Yuhua & Stroe, Daniel-Ioan & Teodorescu, Remus, 2020. "State-of-health estimation of lithium-ion batteries based on semi-supervised transfer component analysis," Applied Energy, Elsevier, vol. 277(C).
    20. Wei, Jingwen & Dong, Guangzhong & Chen, Zonghai & Kang, Yu, 2017. "System state estimation and optimal energy control framework for multicell lithium-ion battery system," Applied Energy, Elsevier, vol. 187(C), pages 37-49.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2612-:d:548132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.