Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: A review
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2007.10.018
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Barelli, L. & Bidini, G. & Corradetti, A. & Desideri, U., 2007. "Production of hydrogen through the carbonation–calcination reaction applied to CH4/CO2 mixtures," Energy, Elsevier, vol. 32(5), pages 834-843.
- Barelli, L. & Bidini, G. & Corradetti, A. & Desideri, U., 2007. "Study of the carbonation–calcination reaction applied to the hydrogen production from syngas," Energy, Elsevier, vol. 32(5), pages 697-710.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Barelli, L. & Ottaviano, A., 2014. "Solid oxide fuel cell technology coupled with methane dry reforming: A viable option for high efficiency plant with reduced CO2 emissions," Energy, Elsevier, vol. 71(C), pages 118-129.
- Barelli, L. & Bidini, G. & Gallorini, F., 2015. "SE-SR with sorbents based on calcium aluminates: Process optimization," Applied Energy, Elsevier, vol. 143(C), pages 110-118.
- Barelli, L. & Bidini, G. & Cinti, G. & Gallorini, F. & Pöniz, M., 2017. "SOFC stack coupled with dry reforming," Applied Energy, Elsevier, vol. 192(C), pages 498-507.
- Li, Yingjie & Zhao, Changsui & Chen, Huichao & Ren, Qiangqiang & Duan, Lunbo, 2011. "CO2 capture efficiency and energy requirement analysis of power plant using modified calcium-based sorbent looping cycle," Energy, Elsevier, vol. 36(3), pages 1590-1598.
- Lee, Jun Sung & Han, Gi Bo & Kang, Misook, 2012. "Low temperature steam reforming of ethanol for carbon monoxide-free hydrogen production over mesoporous Sn-incorporated SBA-15 catalysts," Energy, Elsevier, vol. 44(1), pages 248-256.
- Kavosh, Masoud & Patchigolla, Kumar & Anthony, Edward J. & Oakey, John E., 2014. "Carbonation performance of lime for cyclic CO2 capture following limestone calcination in steam/CO2 atmosphere," Applied Energy, Elsevier, vol. 131(C), pages 499-507.
More about this item
Keywords
Hydrogen; SMR; CO2 capture; Solid acceptor; SE-SMR;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:33:y:2008:i:4:p:554-570. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.