IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v167y2021icp236-247.html
   My bibliography  Save this article

Methane Bi-reforming for direct ethanol production over smart Cu/Mn- ferrite catalysts

Author

Listed:
  • Abd El-Hafiz, Dalia R.
  • Sakr, A. A.E
  • Ebiad, Mohamed A.

Abstract

The main goal of this research is direct synthesis of ethanol from methane bi-reforming reaction (H2O/CO2 methane reforming, SCMR) in a single step catalytic process. Smart nano-structured spinel ferrite catalysts with small ratio of Cu or Mn in composite with Fe cluster were prepared using ultrasonic assistance technique. Characterization data indicate the stability of the prepared ferrite structure during calcination step, so it can use for high temperature reaction. From XPS and Raman spectra, cupper ferrite shows deviation from ideal spinel structure, which increases the migration of bulk oxygen into surface to share in catalytic activity. The catalytic activity test was performed at moderate reaction condition (700 °C) using CO2 as soft oxidant to avoid methane combustion reaction and steam to release the alcoholic products. The two catalysts show unusual high catalytic activity and stability due to strong synergetic effect between metal and Fe. Cu–Fe gives high selectivity (∼50%) toward liquid product (ethanol), while Mn–Fe is more selective (∼70%) toward gas product (syngas). Furthermore, the chemical looping step is used to obtain ultra-stable SCMR reaction. The steam activation steps were performed for re-oxidation of reduced catalyst in addition to removal of carbon deposited.

Suggested Citation

  • Abd El-Hafiz, Dalia R. & Sakr, A. A.E & Ebiad, Mohamed A., 2021. "Methane Bi-reforming for direct ethanol production over smart Cu/Mn- ferrite catalysts," Renewable Energy, Elsevier, vol. 167(C), pages 236-247.
  • Handle: RePEc:eee:renene:v:167:y:2021:i:c:p:236-247
    DOI: 10.1016/j.renene.2020.11.078
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120318279
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.11.078?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gupta, Anubhuti & Verma, Jay Prakash, 2015. "Sustainable bio-ethanol production from agro-residues: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 550-567.
    2. Antzara, Andy & Heracleous, Eleni & Lemonidou, Angeliki A., 2016. "Energy efficient sorption enhanced-chemical looping methane reforming process for high-purity H2 production: Experimental proof-of-concept," Applied Energy, Elsevier, vol. 180(C), pages 457-471.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Holmatov, B. & Hoekstra, A.Y. & Krol, M.S., 2019. "Land, water and carbon footprints of circular bioenergy production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 224-235.
    2. Katia A. Figueroa-Rodríguez & Francisco Hernández-Rosas & Benjamín Figueroa-Sandoval & Joel Velasco-Velasco & Noé Aguilar Rivera, 2019. "What Has Been the Focus of Sugarcane Research? A Bibliometric Overview," IJERPH, MDPI, vol. 16(18), pages 1-15, September.
    3. Rafael Robina Ramírez & Pedro R. Palos-Sánchez, 2018. "Environmental Firms’ Better Attitude towards Nature in the Context of Corporate Compliance," Sustainability, MDPI, vol. 10(9), pages 1-21, September.
    4. Shijia Zhang & Zhichao Wang & Jiong Shen & Xuantong Chen & Juan Zhang, 2023. "Isolation of an Acidophilic Cellulolytic Bacterial Strain and Its Cellulase Production Characteristics," Agriculture, MDPI, vol. 13(7), pages 1-19, June.
    5. Rooni, Vahur & Raud, Merlin & Kikas, Timo, 2017. "The freezing pre-treatment of lignocellulosic material: A cheap alternative for Nordic countries," Energy, Elsevier, vol. 139(C), pages 1-7.
    6. Kyriakou, Maria & Patsalou, Maria & Xiaris, Nikolas & Tsevis, Athanasios & Koutsokeras, Loukas & Constantinides, Georgios & Koutinas, Michalis, 2020. "Enhancing bioproduction and thermotolerance in Saccharomyces cerevisiae via cell immobilization on biochar: Application in a citrus peel waste biorefinery," Renewable Energy, Elsevier, vol. 155(C), pages 53-64.
    7. Akbari-Emadabadi, S. & Rahimpour, M.R. & Hafizi, A. & Keshavarz, P., 2017. "Production of hydrogen-rich syngas using Zr modified Ca-Co bifunctional catalyst-sorbent in chemical looping steam methane reforming," Applied Energy, Elsevier, vol. 206(C), pages 51-62.
    8. Holmatov, B. & Schyns, J.F. & Krol, M.S. & Gerbens-Leenes, P.W. & Hoekstra, A.Y., 2021. "Can crop residues provide fuel for future transport? Limited global residue bioethanol potentials and large associated land, water and carbon footprints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    9. Lu, Chunqiang & Li, Kongzhai & Zhu, Xing & Wei, Yonggang & Li, Lei & Zheng, Min & Fan, Bingbing & He, Fang & Wang, Hua, 2020. "Improved activity of magnetite oxygen carrier for chemical looping steam reforming by ultrasonic treatment," Applied Energy, Elsevier, vol. 261(C).
    10. Barbanera, M. & Lascaro, E. & Foschini, D. & Cotana, F. & Buratti, C., 2018. "Optimization of bioethanol production from steam exploded hornbeam wood (Ostrya carpinifolia) by enzymatic hydrolysis," Renewable Energy, Elsevier, vol. 124(C), pages 136-143.
    11. Adekunle, Ademola & Orsat, Valerie & Raghavan, Vijaya, 2016. "Lignocellulosic bioethanol: A review and design conceptualization study of production from cassava peels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 518-530.
    12. Zhu, Shengdong & Luo, Fang & Huang, Wenjing & Huang, Wangxiang & Wu, Yuanxin, 2017. "Comparison of three fermentation strategies for alleviating the negative effect of the ionic liquid 1-ethyl-3-methylimidazolium acetate on lignocellulosic ethanol production," Applied Energy, Elsevier, vol. 197(C), pages 124-131.
    13. Lu, Chunqiang & Li, Kongzhai & Wang, Hua & Zhu, Xing & Wei, Yonggang & Zheng, Min & Zeng, Chunhua, 2018. "Chemical looping reforming of methane using magnetite as oxygen carrier: Structure evolution and reduction kinetics," Applied Energy, Elsevier, vol. 211(C), pages 1-14.
    14. Pablo Gabriel Rullo & Ramon Costa-Castelló & Vicente Roda & Diego Feroldi, 2018. "Energy Management Strategy for a Bioethanol Isolated Hybrid System: Simulations and Experiments," Energies, MDPI, vol. 11(6), pages 1-25, May.
    15. Soto, Felipe & Marques, Gian & Torres-Jiménez, E. & Vieira, Bráulio & Lacerda, André & Armas, Octavio & Guerrero-Villar, F., 2019. "A comparative study of performance and regulated emissions in a medium-duty diesel engine fueled with sugarcane diesel-farnesane and sugarcane biodiesel-LS9," Energy, Elsevier, vol. 176(C), pages 392-409.
    16. Whiting, Kai & Carmona, Luis Gabriel & Sousa, Tânia, 2017. "A review of the use of exergy to evaluate the sustainability of fossil fuels and non-fuel mineral depletion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 202-211.
    17. Pashchenko, Dmitry, 2018. "First law energy analysis of thermochemical waste-heat recuperation by steam methane reforming," Energy, Elsevier, vol. 143(C), pages 478-487.
    18. da Rosa-Garzon, Nathália Gonsales & Laure, Hélen Julie & Rosa, José César & Cabral, Hamilton, 2019. "Fusarium oxysporum cultured with complex nitrogen sources can degrade agricultural residues: Evidence from analysis of secreted enzymes and intracellular proteome," Renewable Energy, Elsevier, vol. 133(C), pages 941-950.
    19. Khatiwada, Dilip & Leduc, Sylvain & Silveira, Semida & McCallum, Ian, 2016. "Optimizing ethanol and bioelectricity production in sugarcane biorefineries in Brazil," Renewable Energy, Elsevier, vol. 85(C), pages 371-386.
    20. Liu, Zhi-Hua & Le, Rosemary K. & Kosa, Matyas & Yang, Bin & Yuan, Joshua & Ragauskas, Arthur J., 2019. "Identifying and creating pathways to improve biological lignin valorization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 349-362.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:167:y:2021:i:c:p:236-247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.