Vanadium microfluidic fuel cell with novel multi-layer flow-through porous electrodes: Model, simulations and experiments
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2016.05.072
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Flox, Cristina & Skoumal, Marcel & Rubio-Garcia, Javier & Andreu, Teresa & Morante, Juan Ramón, 2013. "Strategies for enhancing electrochemical activity of carbon-based electrodes for all-vanadium redox flow batteries," Applied Energy, Elsevier, vol. 109(C), pages 344-351.
- William A. Braff & Martin Z. Bazant & Cullen R. Buie, 2013. "Membrane-less hydrogen bromine flow battery," Nature Communications, Nature, vol. 4(1), pages 1-6, December.
- Yin, Cong & Gao, Yan & Guo, Shaoyun & Tang, Hao, 2014. "A coupled three dimensional model of vanadium redox flow battery for flow field designs," Energy, Elsevier, vol. 74(C), pages 886-895.
- Li, Li & Zheng, Keqing & Ni, Meng & Leung, Michael K.H. & Xuan, Jin, 2015. "Partial modification of flow-through porous electrodes in microfluidic fuel cell," Energy, Elsevier, vol. 88(C), pages 563-571.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wu, Baoxin & Xu, Xinhai & Dong, Guangzhong & Zhang, Mingming & Luo, Shijing & Leung, Dennis Y.C. & Wang, Yifei, 2024. "Computational modeling studies on microfluidic fuel cell: A prospective review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
- Lei, Y. & Zhang, B.W. & Zhang, Z.H. & Bai, B.F. & Zhao, T.S., 2018. "An improved model of ion selective adsorption in membrane and its application in vanadium redox flow batteries," Applied Energy, Elsevier, vol. 215(C), pages 591-601.
- Li, Li & Xu, Qiang & Xie, Yajun & Wang, Xiaochun & Zhu, Kai & Zheng, Keqing & Li, Xinyu & Huang, Haocheng & Huang, Yugang & Bei, Shaoyi, 2024. "Narrow middle channel design in counter-flow microfluidic fuel cell with flow-through electrodes," Energy, Elsevier, vol. 288(C).
- Muhammad Tanveer & Kwang-Yong Kim, 2021. "Flow Configurations of Membraneless Microfluidic Fuel Cells: A Review," Energies, MDPI, vol. 14(12), pages 1-33, June.
- Li, Li & Fan, Wenguang & Xuan, Jin & Leung, Michael K.H. & Zheng, Keqing & She, Yiyi, 2017. "Optimal design of current collectors for microfluidic fuel cell with flow-through porous electrodes: Model and experiment," Applied Energy, Elsevier, vol. 206(C), pages 413-424.
- Kim, Jungmyung & Park, Heesung, 2017. "Experimental analysis of discharge characteristics in vanadium redox flow battery," Applied Energy, Elsevier, vol. 206(C), pages 451-457.
- Bamgbopa, Musbaudeen O. & Almheiri, Saif & Sun, Hong, 2017. "Prospects of recently developed membraneless cell designs for redox flow batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 506-518.
- Lan, Qiao & Ye, Dingding & Zhu, Xun & Chen, Rong & Liao, Qiang, 2022. "Enhanced gas removal and cell performance of a microfluidic fuel cell by a paper separator embedded in the microchannel," Energy, Elsevier, vol. 239(PB).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Li & Zheng, Keqing & Ni, Meng & Leung, Michael K.H. & Xuan, Jin, 2015. "Partial modification of flow-through porous electrodes in microfluidic fuel cell," Energy, Elsevier, vol. 88(C), pages 563-571.
- Li, Li & Fan, Wenguang & Xuan, Jin & Leung, Michael K.H. & Zheng, Keqing & She, Yiyi, 2017. "Optimal design of current collectors for microfluidic fuel cell with flow-through porous electrodes: Model and experiment," Applied Energy, Elsevier, vol. 206(C), pages 413-424.
- Yin, Cong & Guo, Shaoyun & Fang, Honglin & Liu, Jiayi & Li, Yang & Tang, Hao, 2015. "Numerical and experimental studies of stack shunt current for vanadium redox flow battery," Applied Energy, Elsevier, vol. 151(C), pages 237-248.
- Muhammad Tanveer & Kwang-Yong Kim, 2021. "Flow Configurations of Membraneless Microfluidic Fuel Cells: A Review," Energies, MDPI, vol. 14(12), pages 1-33, June.
- Chen, Wei & Kang, Jialun & Shu, Qing & Zhang, Yunsong, 2019. "Analysis of storage capacity and energy conversion on the performance of gradient and double-layered porous electrode in all-vanadium redox flow batteries," Energy, Elsevier, vol. 180(C), pages 341-355.
- Zhao, Xuebing & Liu, Wei & Deng, Yulin & Zhu, J.Y., 2017. "Low-temperature microbial and direct conversion of lignocellulosic biomass to electricity: Advances and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 268-282.
- Sun, Jie & Zheng, Menglian & Yang, Zhongshu & Yu, Zitao, 2019. "Flow field design pathways from lab-scale toward large-scale flow batteries," Energy, Elsevier, vol. 173(C), pages 637-646.
- Muqing Ding & Tao Liu & Yimin Zhang & Hong Liu & Dong Pan & Liming Chen, 2021. "Physicochemical and Electrochemical Characterization of Vanadium Electrolyte Prepared with Different Grades of V 2 O 5 Raw Materials," Energies, MDPI, vol. 14(18), pages 1-15, September.
- Yoon, Sang Jun & Kim, Sangwon & Kim, Dong Kyu, 2019. "Optimization of local porosity in the electrode as an advanced channel for all-vanadium redox flow battery," Energy, Elsevier, vol. 172(C), pages 26-35.
- Di Blasi, A. & Briguglio, N. & Di Blasi, O. & Antonucci, V., 2014. "Charge–discharge performance of carbon fiber-based electrodes in single cell and short stack for vanadium redox flow battery," Applied Energy, Elsevier, vol. 125(C), pages 114-122.
- Kim, Jungmyung & Park, Heesung, 2018. "Impact of nanofluidic electrolyte on the energy storage capacity in vanadium redox flow battery," Energy, Elsevier, vol. 160(C), pages 192-199.
- Zheng, Qiong & Li, Xianfeng & Cheng, Yuanhui & Ning, Guiling & Xing, Feng & Zhang, Huamin, 2014. "Development and perspective in vanadium flow battery modeling," Applied Energy, Elsevier, vol. 132(C), pages 254-266.
- Wang, Q. & Qu, Z.G. & Jiang, Z.Y. & Yang, W.W., 2018. "Numerical study on vanadium redox flow battery performance with non-uniformly compressed electrode and serpentine flow field," Applied Energy, Elsevier, vol. 220(C), pages 106-116.
- Pan, Jianxin & Huang, Mianyan & Li, Xue & Wang, Shubo & Li, Weihua & Ma, Tao & Xie, Xiaofeng & Ramani, Vijay, 2016. "The performance of all vanadium redox flow batteries at below-ambient temperatures," Energy, Elsevier, vol. 107(C), pages 784-790.
- Iñigo Aramendia & Unai Fernandez-Gamiz & Adrian Martinez-San-Vicente & Ekaitz Zulueta & Jose Manuel Lopez-Guede, 2020. "Vanadium Redox Flow Batteries: A Review Oriented to Fluid-Dynamic Optimization," Energies, MDPI, vol. 14(1), pages 1-20, December.
- Bamgbopa, Musbaudeen O. & Almheiri, Saif & Sun, Hong, 2017. "Prospects of recently developed membraneless cell designs for redox flow batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 506-518.
- Wang, Tao & Fu, Jiahui & Zheng, Menglian & Yu, Zitao, 2018. "Dynamic control strategy for the electrolyte flow rate of vanadium redox flow batteries," Applied Energy, Elsevier, vol. 227(C), pages 613-623.
- Di Blasi, O. & Briguglio, N. & Busacca, C. & Ferraro, M. & Antonucci, V. & Di Blasi, A., 2015. "Electrochemical investigation of thermically treated graphene oxides as electrode materials for vanadium redox flow battery," Applied Energy, Elsevier, vol. 147(C), pages 74-81.
- Kim, Jungmyung & Park, Heesung, 2019. "Electrokinetic parameters of a vanadium redox flow battery with varying temperature and electrolyte flow rate," Renewable Energy, Elsevier, vol. 138(C), pages 284-291.
- Di Blasi, A. & Busaccaa, C. & Di Blasia, O. & Briguglioa, N. & Squadritoa, G. & Antonuccia, V., 2017. "Synthesis of flexible electrodes based on electrospun carbon nanofibers with Mn3O4 nanoparticles for vanadium redox flow battery application," Applied Energy, Elsevier, vol. 190(C), pages 165-171.
More about this item
Keywords
Microfluidic fuel cell; Multi-layer porous electrode; Partial modification; Vanadium redox couple;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:177:y:2016:i:c:p:729-739. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.