IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v206y2017icp413-424.html
   My bibliography  Save this article

Optimal design of current collectors for microfluidic fuel cell with flow-through porous electrodes: Model and experiment

Author

Listed:
  • Li, Li
  • Fan, Wenguang
  • Xuan, Jin
  • Leung, Michael K.H.
  • Zheng, Keqing
  • She, Yiyi

Abstract

Design optimization of current collectors has been performed to reduce the significant ohmic resistance observed in microfluidic fuel cell (MFC) with flow-through porous electrodes. A three-dimensional computational model is developed to investigate the electron transport characteristics in the porous electrodes, where lateral electron transport is found to encounter high resistance. Influences of different current collector design parameters on the transport resistances are examined and analyzed. The modeling results indicate that current collector position is the most influential factor due to the non-uniform flow rate distribution. Optimal current collector position is located at the high flow rate region instead of the conventional exposed end of the porous electrode. Experimental studies are performed to support the modeling analysis. The experimental results demonstrate that the optimized current collector position can boost the maximum power density by 61%. This study highlights the significance of the current collector design in achieving high performance MFC with flow-through porous electrodes. Based on the results, some general rules have been set for the current collector designs in this energy system, which can provide useful guidance for the future development of MFC.

Suggested Citation

  • Li, Li & Fan, Wenguang & Xuan, Jin & Leung, Michael K.H. & Zheng, Keqing & She, Yiyi, 2017. "Optimal design of current collectors for microfluidic fuel cell with flow-through porous electrodes: Model and experiment," Applied Energy, Elsevier, vol. 206(C), pages 413-424.
  • Handle: RePEc:eee:appene:v:206:y:2017:i:c:p:413-424
    DOI: 10.1016/j.apenergy.2017.08.175
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917312023
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.08.175?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Yifei & Leung, Dennis Y.C. & Zhang, Hao & Xuan, Jin & Wang, Huizhi, 2017. "Numerical and experimental comparative study of microfluidic fuel cells with different flow configurations: Co-flow vs. counter-flow cell," Applied Energy, Elsevier, vol. 203(C), pages 535-548.
    2. Li, Li & Nikiforidis, Georgios & Leung, Michael K.H. & Daoud, Walid A., 2016. "Vanadium microfluidic fuel cell with novel multi-layer flow-through porous electrodes: Model, simulations and experiments," Applied Energy, Elsevier, vol. 177(C), pages 729-739.
    3. Zamel, Nada & Li, Xianguo & Shen, Jun, 2012. "Numerical estimation of the effective electrical conductivity in carbon paper diffusion media," Applied Energy, Elsevier, vol. 93(C), pages 39-44.
    4. Ismail, M.S. & Ingham, D.B. & Ma, L. & Pourkashanian, M., 2013. "The contact resistance between gas diffusion layers and bipolar plates as they are assembled in proton exchange membrane fuel cells," Renewable Energy, Elsevier, vol. 52(C), pages 40-45.
    5. Li, Li & Zheng, Keqing & Ni, Meng & Leung, Michael K.H. & Xuan, Jin, 2015. "Partial modification of flow-through porous electrodes in microfluidic fuel cell," Energy, Elsevier, vol. 88(C), pages 563-571.
    6. Wang, Yifei & Leung, Dennis Y.C. & Xuan, Jin & Wang, Huizhi, 2015. "A vapor feed methanol microfluidic fuel cell with high fuel and energy efficiency," Applied Energy, Elsevier, vol. 147(C), pages 456-465.
    7. Xu, Hong & Zhang, Hao & Wang, Huizhi & Leung, Dennis Y.C. & Zhang, Li & Cao, Jun & Jiao, Kui & Xuan, Jin, 2015. "Counter-flow formic acid microfluidic fuel cell with high fuel utilization exceeding 90%," Applied Energy, Elsevier, vol. 160(C), pages 930-936.
    8. William A. Braff & Martin Z. Bazant & Cullen R. Buie, 2013. "Membrane-less hydrogen bromine flow battery," Nature Communications, Nature, vol. 4(1), pages 1-6, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Baoxin & Xu, Xinhai & Dong, Guangzhong & Zhang, Mingming & Luo, Shijing & Leung, Dennis Y.C. & Wang, Yifei, 2024. "Computational modeling studies on microfluidic fuel cell: A prospective review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    2. Zhong, Kengqiang & Li, Meng & Yang, Yue & Zhang, Hongguo & Zhang, Bopeng & Tang, Jinfeng & Yan, Jia & Su, Minhua & Yang, Zhiquan, 2019. "Nitrogen-doped biochar derived from watermelon rind as oxygen reduction catalyst in air cathode microbial fuel cells," Applied Energy, Elsevier, vol. 242(C), pages 516-525.
    3. She, Yiyi & Chen, Jinfan & Zhang, Chengxu & Lu, Zhouguang & Ni, Meng & Sit, Patrick H.-L. & Leung, Michael K.H., 2018. "Nitrogen-doped graphene derived from ionic liquid as metal-free catalyst for oxygen reduction reaction and its mechanisms," Applied Energy, Elsevier, vol. 225(C), pages 513-521.
    4. Lan, Qiao & Ye, Dingding & Zhu, Xun & Chen, Rong & Liao, Qiang, 2022. "Enhanced gas removal and cell performance of a microfluidic fuel cell by a paper separator embedded in the microchannel," Energy, Elsevier, vol. 239(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Tanveer & Kwang-Yong Kim, 2021. "Flow Configurations of Membraneless Microfluidic Fuel Cells: A Review," Energies, MDPI, vol. 14(12), pages 1-33, June.
    2. Lan, Qiao & Ye, Dingding & Zhu, Xun & Chen, Rong & Liao, Qiang, 2022. "Enhanced gas removal and cell performance of a microfluidic fuel cell by a paper separator embedded in the microchannel," Energy, Elsevier, vol. 239(PB).
    3. Wu, Baoxin & Xu, Xinhai & Dong, Guangzhong & Zhang, Mingming & Luo, Shijing & Leung, Dennis Y.C. & Wang, Yifei, 2024. "Computational modeling studies on microfluidic fuel cell: A prospective review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    4. Ouyang, Tiancheng & Lu, Jie & Xu, Peihang & Hu, Xiaoyi & Chen, Jingxian, 2022. "High-efficiency fuel utilization innovation in microfluidic fuel cells: From liquid-feed to vapor-feed," Energy, Elsevier, vol. 240(C).
    5. Li, Li & Xu, Qiang & Xie, Yajun & Wang, Xiaochun & Zhu, Kai & Zheng, Keqing & Li, Xinyu & Huang, Haocheng & Huang, Yugang & Bei, Shaoyi, 2024. "Narrow middle channel design in counter-flow microfluidic fuel cell with flow-through electrodes," Energy, Elsevier, vol. 288(C).
    6. Bamgbopa, Musbaudeen O. & Almheiri, Saif & Sun, Hong, 2017. "Prospects of recently developed membraneless cell designs for redox flow batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 506-518.
    7. Li, Li & Wang, Hongkang & Bei, Shaoyi & Li, Yuanjiang & Sun, Yanyun & Zheng, Keqing & Xu, Qiang, 2023. "Unsymmetrical design and operation in counter-flow microfluidic fuel cell: A prospective study," Energy, Elsevier, vol. 262(PB).
    8. Wang, Yifei & Leung, Dennis Y.C. & Zhang, Hao & Xuan, Jin & Wang, Huizhi, 2017. "Numerical and experimental comparative study of microfluidic fuel cells with different flow configurations: Co-flow vs. counter-flow cell," Applied Energy, Elsevier, vol. 203(C), pages 535-548.
    9. Wang, Yifei & Luo, Shijing & Kwok, Holly Y.H. & Pan, Wending & Zhang, Yingguang & Zhao, Xiaolong & Leung, Dennis Y.C., 2021. "Microfluidic fuel cells with different types of fuels: A prospective review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    10. Ye, Lingfeng & Qiu, Diankai & Peng, Linfa & Lai, Xinmin, 2022. "Microstructures and electrical conductivity properties of compressed gas diffusion layers using X-ray tomography," Applied Energy, Elsevier, vol. 326(C).
    11. Li, Li & Nikiforidis, Georgios & Leung, Michael K.H. & Daoud, Walid A., 2016. "Vanadium microfluidic fuel cell with novel multi-layer flow-through porous electrodes: Model, simulations and experiments," Applied Energy, Elsevier, vol. 177(C), pages 729-739.
    12. Bouziane, Khadidja & Khetabi, El Mahdi & Lachat, Rémy & Zamel, Nada & Meyer, Yann & Candusso, Denis, 2020. "Impact of cyclic mechanical compression on the electrical contact resistance between the gas diffusion layer and the bipolar plate of a polymer electrolyte membrane fuel cell," Renewable Energy, Elsevier, vol. 153(C), pages 349-361.
    13. Samir De, Biswajit & Cunningham, Joshua & Khare, Neeraj & Luo, Jing-Li & Elias, Anastasia & Basu, Suddhasatwa, 2022. "Hydrogen generation and utilization in a two-phase flow membraneless microfluidic electrolyzer-fuel cell tandem operation for micropower application," Applied Energy, Elsevier, vol. 305(C).
    14. Lu, Xu & Wang, Yifei & Leung, Dennis Y.C. & Xuan, Jin & Wang, Huizhi, 2018. "A counter-flow-based dual-electrolyte protocol for multiple electrochemical applications," Applied Energy, Elsevier, vol. 217(C), pages 241-248.
    15. Lu, Xu & Leung, Dennis Y.C. & Wang, Huizhi & Xuan, Jin, 2017. "A high performance dual electrolyte microfluidic reactor for the utilization of CO2," Applied Energy, Elsevier, vol. 194(C), pages 549-559.
    16. Fu, Ya-Lu & Zhang, Biao & Zhu, Xun & Ye, Ding-Ding & Sui, Pang-Chieh & Djilali, Ned, 2020. "Pore-scale modeling of oxygen transport in the catalyst layer of air-breathing cathode in membraneless microfluidic fuel cells," Applied Energy, Elsevier, vol. 277(C).
    17. Baik, Kyung Don & Hong, Bo Ki & Han, Kookil & Kim, Min Soo, 2014. "Effects of anisotropic bending stiffness of gas diffusion layers on the performance of polymer electrolyte membrane fuel cells with bipolar plates employing different channel depths," Renewable Energy, Elsevier, vol. 69(C), pages 356-364.
    18. Wang, Yifei & Leung, Dennis Y.C. & Xuan, Jin & Wang, Huizhi, 2017. "A review on unitized regenerative fuel cell technologies, part B: Unitized regenerative alkaline fuel cell, solid oxide fuel cell, and microfluidic fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 775-795.
    19. Aldakheel, F. & Ismail, M.S. & Hughes, K.J. & Ingham, D.B. & Ma, L. & Pourkashanian, M. & Cumming, D. & Smith, R., 2020. "Gas permeability, wettability and morphology of gas diffusion layers before and after performing a realistic ex-situ compression test," Renewable Energy, Elsevier, vol. 151(C), pages 1082-1091.
    20. Wang, Yifei & Leung, Dennis Y.C., 2016. "A circular stacking strategy for microfluidic fuel cells with volatile methanol fuel," Applied Energy, Elsevier, vol. 184(C), pages 659-669.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:206:y:2017:i:c:p:413-424. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.