IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v177y2016icp179-186.html
   My bibliography  Save this article

Effect of air addition to methane on performance stability and coking over NiO–YSZ anodes of SOFC

Author

Listed:
  • Aslannejad, H.
  • Barelli, L.
  • Babaie, A.
  • Bozorgmehri, S.

Abstract

The use of natural gas as fuel for solid oxide fuel cell is one of main potentials of this technology to be exploited as an efficient and profitable future power generation source. However, using direct methane (main component of natural gas) in conventional nickel-based fuel cells leads to carbon deposition problem which causes performance failure even in short period (24h). According to thermodynamic principles, fuel addition with oxygen carriers is a good solution to prevent carbon deposition problem. Among the different options, a deep investigation is here presented for the air addition case. Through experimental activity under different operating conditions and suitable performance and structural cell characterization, the 1:5 optimal air addition to methane is determined, providing outcomes of interest for SOFC operation optimization in case of direct methane feeding. In fact, through impedance spectroscopy analysis and voltage measurements, as well as ex-post structural analysis, it is proved that in these conditions both carbon deposition and anode layers delamination are avoided, also after 100h operation; moreover a cell stable operation at 0.6V is guaranteed. The proposed operation mode, therefore, represents a promising solution, to be deeply investigated in the future at stack level, for SOFCs directly fed with natural gas.

Suggested Citation

  • Aslannejad, H. & Barelli, L. & Babaie, A. & Bozorgmehri, S., 2016. "Effect of air addition to methane on performance stability and coking over NiO–YSZ anodes of SOFC," Applied Energy, Elsevier, vol. 177(C), pages 179-186.
  • Handle: RePEc:eee:appene:v:177:y:2016:i:c:p:179-186
    DOI: 10.1016/j.apenergy.2016.05.127
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916307322
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.05.127?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qu, Jifa & Wang, Wei & Chen, Yubo & Deng, Xiang & Shao, Zongping, 2016. "Stable direct-methane solid oxide fuel cells with calcium-oxide-modified nickel-based anodes operating at reduced temperatures," Applied Energy, Elsevier, vol. 164(C), pages 563-571.
    2. Yan, Min & Zeng, Min & Chen, Qiuyang & Wang, Qiuwang, 2012. "Numerical study on carbon deposition of SOFC with unsteady state variation of porosity," Applied Energy, Elsevier, vol. 97(C), pages 754-762.
    3. Ma, Ting & Yan, Min & Zeng, Min & Yuan, Jin-liang & Chen, Qiu-yang & Sundén, Bengt & Wang, Qiu-wang, 2015. "Parameter study of transient carbon deposition effect on the performance of a planar solid oxide fuel cell," Applied Energy, Elsevier, vol. 152(C), pages 217-228.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Jiang & Lin, Zijing, 2018. "Degradations of the electrochemical performance of solid oxide fuel cell induced by material microstructure evolutions," Applied Energy, Elsevier, vol. 231(C), pages 22-28.
    2. Ahmad Fuzamy Mohd Abd Fatah & Ahmad Zaki Rosli & Ahmad Azmin Mohamad & Andanastuti Muchtar & Muhammed Ali S.A. & Noorashrina A. Hamid, 2022. "Electrochemical Evaluation of Nickel Oxide Addition toward Lanthanum Strontium Cobalt Ferrite Cathode for Intermediate Temperature Solid Oxide Fuel Cell (IT-SOFCS)," Energies, MDPI, vol. 15(14), pages 1-15, July.
    3. Yang, Yang & Li, Tian & Feng, Peizhong & Wang, Xinxin & Wang, Shaorong & Ling, Yihan & Shao, Zongping, 2022. "Highly efficient conversion of oxygen-bearing low concentration coal-bed methane into power via solid oxide fuel cell integrated with an activated catalyst-modified anode microchannel," Applied Energy, Elsevier, vol. 328(C).
    4. Li, Bangxin & Irvine, John T.S. & Ni, Jiupai & Ni, Chengsheng, 2022. "High-performance and durable alcohol-fueled symmetrical solid oxide fuel cell based on ferrite perovskite electrode," Applied Energy, Elsevier, vol. 306(PB).
    5. Subotić, Vanja & Stoeckl, Bernhard & Lawlor, Vincent & Strasser, Johannes & Schroettner, Hartmuth & Hochenauer, Christoph, 2018. "Towards a practical tool for online monitoring of solid oxide fuel cell operation: An experimental study and application of advanced data analysis approaches," Applied Energy, Elsevier, vol. 222(C), pages 748-761.
    6. Farnak, M. & Esfahani, J.A. & Bozorgmehri, S., 2020. "An experimental design of the solid oxide fuel cell performance by using partially oxidation reforming of natural gas," Renewable Energy, Elsevier, vol. 147(P1), pages 155-163.
    7. Lyu, Zewei & Shi, Wangying & Han, Minfang, 2018. "Electrochemical characteristics and carbon tolerance of solid oxide fuel cells with direct internal dry reforming of methane," Applied Energy, Elsevier, vol. 228(C), pages 556-567.
    8. Silva-Mosqueda, Dulce María & Elizalde-Blancas, Francisco & Pumiglia, Davide & Santoni, Francesca & Boigues-Muñoz, Carlos & McPhail, Stephen J., 2019. "Intermediate temperature solid oxide fuel cell under internal reforming: Critical operating conditions, associated problems and their impact on the performance," Applied Energy, Elsevier, vol. 235(C), pages 625-640.
    9. Choi, Indae & Kim, Jung-Sik & Venkatesan, Vijay & Ranaweera, Manoj, 2017. "Fabrication and evaluation of a novel wavy Single Chamber Solid Oxide Fuel Cell via in-situ monitoring of curvature evolution," Applied Energy, Elsevier, vol. 195(C), pages 1038-1046.
    10. Steil, M.C. & Nobrega, S.D. & Georges, S. & Gelin, P. & Uhlenbruck, S. & Fonseca, F.C., 2017. "Durable direct ethanol anode-supported solid oxide fuel cell," Applied Energy, Elsevier, vol. 199(C), pages 180-186.
    11. Mohamad Fairus Rabuni & Tao Li & Mohd Hafiz Dzarfan Othman & Faidzul Hakim Adnan & Kang Li, 2023. "Progress in Solid Oxide Fuel Cells with Hydrocarbon Fuels," Energies, MDPI, vol. 16(17), pages 1-36, September.
    12. Barelli, L. & Bidini, G. & Cinti, G. & Gallorini, F. & Pöniz, M., 2017. "SOFC stack coupled with dry reforming," Applied Energy, Elsevier, vol. 192(C), pages 498-507.
    13. Orlando Corigliano & Leonardo Pagnotta & Petronilla Fragiacomo, 2022. "On the Technology of Solid Oxide Fuel Cell (SOFC) Energy Systems for Stationary Power Generation: A Review," Sustainability, MDPI, vol. 14(22), pages 1-73, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng Li & Guogang Yang & Qiuwan Shen & Shian Li & Hao Wang & Jiadong Liao & Ziheng Jiang & Guoling Zhang, 2022. "Transient Multi-Physics Modeling and Performance Degradation Evaluation of Direct Internal Reforming Solid Oxide Fuel Cell Focusing on Carbon Deposition Effect," Energies, MDPI, vol. 16(1), pages 1-20, December.
    2. Xu, Han & Dang, Zheng, 2016. "Lattice Boltzmann modeling of carbon deposition in porous anode of a solid oxide fuel cell with internal reforming," Applied Energy, Elsevier, vol. 178(C), pages 294-307.
    3. Thieu, Cam-Anh & Ji, Ho-Il & Kim, Hyoungchul & Yoon, Kyung Joong & Lee, Jong-Ho & Son, Ji-Won, 2019. "Palladium incorporation at the anode of thin-film solid oxide fuel cells and its effect on direct utilization of butane fuel at 600 °C," Applied Energy, Elsevier, vol. 243(C), pages 155-164.
    4. Ma, Ting & Yan, Min & Zeng, Min & Yuan, Jin-liang & Chen, Qiu-yang & Sundén, Bengt & Wang, Qiu-wang, 2015. "Parameter study of transient carbon deposition effect on the performance of a planar solid oxide fuel cell," Applied Energy, Elsevier, vol. 152(C), pages 217-228.
    5. Barelli, L. & Bidini, G. & Cinti, G. & Gallorini, F. & Pöniz, M., 2017. "SOFC stack coupled with dry reforming," Applied Energy, Elsevier, vol. 192(C), pages 498-507.
    6. Xiao-Long Wu & Hong Zhang & Hongli Liu & Yuan-Wu Xu & Jingxuan Peng & Zhiping Xia & Yongan Wang, 2022. "Modeling Analysis of SOFC System Oriented to Working Condition Identification," Energies, MDPI, vol. 15(5), pages 1-19, February.
    7. Subotić, Vanja & Stoeckl, Bernhard & Lawlor, Vincent & Strasser, Johannes & Schroettner, Hartmuth & Hochenauer, Christoph, 2018. "Towards a practical tool for online monitoring of solid oxide fuel cell operation: An experimental study and application of advanced data analysis approaches," Applied Energy, Elsevier, vol. 222(C), pages 748-761.
    8. Sorce, A. & Greco, A. & Magistri, L. & Costamagna, P., 2014. "FDI oriented modeling of an experimental SOFC system, model validation and simulation of faulty states," Applied Energy, Elsevier, vol. 136(C), pages 894-908.
    9. Chen, Daifen & Zeng, Qice & Su, Shichuan & Bi, Wuxi & Ren, Zhiqiang, 2013. "Geometric optimization of a 10-cell modular planar solid oxide fuel cell stack manifold," Applied Energy, Elsevier, vol. 112(C), pages 1100-1107.
    10. Pan, Zehua & Liu, Qinglin & Zhang, Lan & Zhou, Juan & Zhang, Caizhi & Chan, Siew Hwa, 2017. "Experimental and thermodynamic study on the performance of water electrolysis by solid oxide electrolyzer cells with Nb-doped Co-based perovskite anode," Applied Energy, Elsevier, vol. 191(C), pages 559-567.
    11. Wang, Baoxuan & Zhu, Jiang & Lin, Zijing, 2016. "A theoretical framework for multiphysics modeling of methane fueled solid oxide fuel cell and analysis of low steam methane reforming kinetics," Applied Energy, Elsevier, vol. 176(C), pages 1-11.
    12. Komatsu, Y. & Brus, G. & Kimijima, S. & Szmyd, J.S., 2014. "The effect of overpotentials on the transient response of the 300W SOFC cell stack voltage," Applied Energy, Elsevier, vol. 115(C), pages 352-359.
    13. Hong, Sung Kook & Dong, Sang Keun & Han, Jeong Ok & Lee, Joong Seong & Lee, Young Chul, 2013. "Numerical study of effect of operating and design parameters for design of steam reforming reactor," Energy, Elsevier, vol. 61(C), pages 410-418.
    14. Silva-Mosqueda, Dulce María & Elizalde-Blancas, Francisco & Pumiglia, Davide & Santoni, Francesca & Boigues-Muñoz, Carlos & McPhail, Stephen J., 2019. "Intermediate temperature solid oxide fuel cell under internal reforming: Critical operating conditions, associated problems and their impact on the performance," Applied Energy, Elsevier, vol. 235(C), pages 625-640.
    15. Lei, Libin & Keels, Jayson M. & Tao, Zetian & Zhang, Jihao & Chen, Fanglin, 2018. "Thermodynamic and experimental assessment of proton conducting solid oxide fuel cells with internal methane steam reforming," Applied Energy, Elsevier, vol. 224(C), pages 280-288.
    16. He, Zhongjie & Li, Hua & Birgersson, E., 2014. "Correlating variability of modeling parameters with non-isothermal stack performance: Monte Carlo simulation of a portable 3D planar solid oxide fuel cell stack," Applied Energy, Elsevier, vol. 136(C), pages 560-575.
    17. Xu, Haoran & Chen, Bin & Tan, Peng & Cai, Weizi & He, Wei & Farrusseng, David & Ni, Meng, 2018. "Modeling of all porous solid oxide fuel cells," Applied Energy, Elsevier, vol. 219(C), pages 105-113.
    18. Zaccaria, V. & Tucker, D. & Traverso, A., 2017. "Operating strategies to minimize degradation in fuel cell gas turbine hybrids," Applied Energy, Elsevier, vol. 192(C), pages 437-445.
    19. Min Yan & Pei Fu & Qiuyang Chen & Qiuwang Wang & Min Zeng & Jaideep Pandit, 2014. "Electrical Performance and Carbon Deposition Differences between the Bi-Layer Interconnector and Conventional Straight Interconnector Solid Oxide Fuel Cell," Energies, MDPI, vol. 7(7), pages 1-13, July.
    20. Xu, Haoran & Chen, Bin & Tan, Peng & Xuan, Jin & Maroto-Valer, M. Mercedes & Farrusseng, David & Sun, Qiong & Ni, Meng, 2019. "Modeling of all-porous solid oxide fuel cells with a focus on the electrolyte porosity design," Applied Energy, Elsevier, vol. 235(C), pages 602-611.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:177:y:2016:i:c:p:179-186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.