A theoretical framework for multiphysics modeling of methane fueled solid oxide fuel cell and analysis of low steam methane reforming kinetics
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2016.05.049
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Eveloy, Valérie, 2012. "Numerical analysis of an internal methane reforming solid oxide fuel cell with fuel recycling," Applied Energy, Elsevier, vol. 93(C), pages 107-115.
- Menon, Vikram & Banerjee, Aayan & Dailly, Julian & Deutschmann, Olaf, 2015. "Numerical analysis of mass and heat transport in proton-conducting SOFCs with direct internal reforming," Applied Energy, Elsevier, vol. 149(C), pages 161-175.
- Andersson, Martin & Yuan, Jinliang & Sundén, Bengt, 2010. "Review on modeling development for multiscale chemical reactions coupled transport phenomena in solid oxide fuel cells," Applied Energy, Elsevier, vol. 87(5), pages 1461-1476, May.
- Yan, Min & Zeng, Min & Chen, Qiuyang & Wang, Qiuwang, 2012. "Numerical study on carbon deposition of SOFC with unsteady state variation of porosity," Applied Energy, Elsevier, vol. 97(C), pages 754-762.
- Sorce, A. & Greco, A. & Magistri, L. & Costamagna, P., 2014. "FDI oriented modeling of an experimental SOFC system, model validation and simulation of faulty states," Applied Energy, Elsevier, vol. 136(C), pages 894-908.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhu, Jiang & Lin, Zijing, 2018. "Degradations of the electrochemical performance of solid oxide fuel cell induced by material microstructure evolutions," Applied Energy, Elsevier, vol. 231(C), pages 22-28.
- Kupecki, Jakub & Motylinski, Konrad & Milewski, Jaroslaw, 2018. "Dynamic analysis of direct internal reforming in a SOFC stack with electrolyte-supported cells using a quasi-1D model," Applied Energy, Elsevier, vol. 227(C), pages 198-205.
- Pashchenko, Dmitry, 2018. "First law energy analysis of thermochemical waste-heat recuperation by steam methane reforming," Energy, Elsevier, vol. 143(C), pages 478-487.
- Li, Ang & Song, Ce & Lin, Zijing, 2017. "A multiphysics fully coupled modeling tool for the design and operation analysis of planar solid oxide fuel cell stacks," Applied Energy, Elsevier, vol. 190(C), pages 1234-1244.
- van Biert, L. & Godjevac, M. & Visser, K. & Aravind, P.V., 2019. "Dynamic modelling of a direct internal reforming solid oxide fuel cell stack based on single cell experiments," Applied Energy, Elsevier, vol. 250(C), pages 976-990.
- Fang, Xiurong & Lin, Zijing, 2018. "Numerical study on the mechanical stress and mechanical failure of planar solid oxide fuel cell," Applied Energy, Elsevier, vol. 229(C), pages 63-68.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Rashid, Kashif & Dong, Sang Keun & Mehran, Muhammad Taqi & Lee, Dong Won, 2017. "Design and analysis of compact hotbox for solid oxide fuel cell based 1kW-class power generation system," Applied Energy, Elsevier, vol. 208(C), pages 620-636.
- Chen, Daifen & Zeng, Qice & Su, Shichuan & Bi, Wuxi & Ren, Zhiqiang, 2013. "Geometric optimization of a 10-cell modular planar solid oxide fuel cell stack manifold," Applied Energy, Elsevier, vol. 112(C), pages 1100-1107.
- Komatsu, Y. & Brus, G. & Kimijima, S. & Szmyd, J.S., 2014. "The effect of overpotentials on the transient response of the 300W SOFC cell stack voltage," Applied Energy, Elsevier, vol. 115(C), pages 352-359.
- Al-Masri, A. & Peksen, M. & Blum, L. & Stolten, D., 2014. "A 3D CFD model for predicting the temperature distribution in a full scale APU SOFC short stack under transient operating conditions," Applied Energy, Elsevier, vol. 135(C), pages 539-547.
- Sorce, A. & Greco, A. & Magistri, L. & Costamagna, P., 2014. "FDI oriented modeling of an experimental SOFC system, model validation and simulation of faulty states," Applied Energy, Elsevier, vol. 136(C), pages 894-908.
- Silva-Mosqueda, Dulce María & Elizalde-Blancas, Francisco & Pumiglia, Davide & Santoni, Francesca & Boigues-Muñoz, Carlos & McPhail, Stephen J., 2019. "Intermediate temperature solid oxide fuel cell under internal reforming: Critical operating conditions, associated problems and their impact on the performance," Applied Energy, Elsevier, vol. 235(C), pages 625-640.
- Putilov, L.P. & Demin, A.K. & Tsidilkovski, V.I. & Tsiakaras, P., 2019. "Theoretical modeling of the gas humidification effect on the characteristics of proton ceramic fuel cells," Applied Energy, Elsevier, vol. 242(C), pages 1448-1459.
- He, Zhongjie & Li, Hua & Birgersson, E., 2014. "Correlating variability of modeling parameters with non-isothermal stack performance: Monte Carlo simulation of a portable 3D planar solid oxide fuel cell stack," Applied Energy, Elsevier, vol. 136(C), pages 560-575.
- Min Yan & Pei Fu & Qiuyang Chen & Qiuwang Wang & Min Zeng & Jaideep Pandit, 2014. "Electrical Performance and Carbon Deposition Differences between the Bi-Layer Interconnector and Conventional Straight Interconnector Solid Oxide Fuel Cell," Energies, MDPI, vol. 7(7), pages 1-13, July.
- Shao, Qian & Gao, Enlai & Mara, Thierry & Hu, Heng & Liu, Tong & Makradi, Ahmed, 2020. "Global sensitivity analysis of solid oxide fuel cells with Bayesian sparse polynomial chaos expansions," Applied Energy, Elsevier, vol. 260(C).
- Kupecki, Jakub & Motylinski, Konrad & Milewski, Jaroslaw, 2018. "Dynamic analysis of direct internal reforming in a SOFC stack with electrolyte-supported cells using a quasi-1D model," Applied Energy, Elsevier, vol. 227(C), pages 198-205.
- Polverino, Pierpaolo & Sorrentino, Marco & Pianese, Cesare, 2017. "A model-based diagnostic technique to enhance faults isolability in Solid Oxide Fuel Cell systems," Applied Energy, Elsevier, vol. 204(C), pages 1198-1214.
- Xu, Yuan-wu & Wu, Xiao-long & Zhong, Xiao-bo & Zhao, Dong-qi & Sorrentino, Marco & Jiang, Jianhua & Jiang, Chang & Fu, Xiaowei & Li, Xi, 2021. "Mechanism model-based and data-driven approach for the diagnosis of solid oxide fuel cell stack leakage," Applied Energy, Elsevier, vol. 286(C).
- Fardadi, Mahshid & McLarty, Dustin F. & Jabbari, Faryar, 2016. "Investigation of thermal control for different SOFC flow geometries," Applied Energy, Elsevier, vol. 178(C), pages 43-55.
- Wang, Junye, 2015. "Theory and practice of flow field designs for fuel cell scaling-up: A critical review," Applied Energy, Elsevier, vol. 157(C), pages 640-663.
- Tong, Zi-Xiang & Li, Ming-Jia & He, Ya-Ling & Tan, Hou-Zhang, 2017. "Simulation of real time particle deposition and removal processes on tubes by coupled numerical method," Applied Energy, Elsevier, vol. 185(P2), pages 2181-2193.
- Tzelepis, Stefanos & Kavadias, Kosmas A. & Marnellos, George E. & Xydis, George, 2021. "A review study on proton exchange membrane fuel cell electrochemical performance focusing on anode and cathode catalyst layer modelling at macroscopic level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
- van Biert, L. & Godjevac, M. & Visser, K. & Aravind, P.V., 2019. "Dynamic modelling of a direct internal reforming solid oxide fuel cell stack based on single cell experiments," Applied Energy, Elsevier, vol. 250(C), pages 976-990.
- Ma, Ting & Yan, Min & Zeng, Min & Yuan, Jin-liang & Chen, Qiu-yang & Sundén, Bengt & Wang, Qiu-wang, 2015. "Parameter study of transient carbon deposition effect on the performance of a planar solid oxide fuel cell," Applied Energy, Elsevier, vol. 152(C), pages 217-228.
- Cheng, Tianliang & Jiang, Jianhua & Wu, Xiaodong & Li, Xi & Xu, Mengxue & Deng, Zhonghua & Li, Jian, 2019. "Application oriented multiple-objective optimization, analysis and comparison of solid oxide fuel cell systems with different configurations," Applied Energy, Elsevier, vol. 235(C), pages 914-929.
More about this item
Keywords
Modeling and simulation; Methane steam reforming; Kinetic model; Open circuit voltage; I–V relation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:176:y:2016:i:c:p:1-11. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.