IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i17p6404-d1232795.html
   My bibliography  Save this article

Progress in Solid Oxide Fuel Cells with Hydrocarbon Fuels

Author

Listed:
  • Mohamad Fairus Rabuni

    (Sustainable Process Engineering Centre (SPEC), Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia)

  • Tao Li

    (MOE Key Laboratory of Energy Thermal Conversion & Control, School of Energy and Environment, Southeast University, Nanjing 211189, China)

  • Mohd Hafiz Dzarfan Othman

    (Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru 81310, Malaysia)

  • Faidzul Hakim Adnan

    (Sustainable Process Engineering Centre (SPEC), Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia)

  • Kang Li

    (Barrer Centre, Department of Chemical Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, UK)

Abstract

Solid oxide fuel cells (SOFCs)’ main advantage in fuel flexibility appears to be an interesting subject for further exploration. From the literature survey, direct utilisation of hydrocarbon as fuel for SOFCs has garnered attention with promising results reported. Various approaches, showcasing potential for using methane (CH 4 ) and heavier hydrocarbons in SOFCs, have been described. The direct use of hydrocarbons can occur through either direct internal reforming or gradual internal reforming, with requisite precautionary measures to mitigate carbon formation. While the internal reforming process could proceed via steam reforming, dry reforming or partial oxidation, an exciting development in the direct use of pure hydrocarbons, seems to progress well. Further exploration aims to refine strategies, enhance efficiency and ensure the long-term stability and performance of hydrocarbon-fuelled SOFC systems. This review delves into the progress in this field, primarily over the past two decades, offering comprehensive insights. Regardless of fuel type, studies have largely concentrated on catalyst compositions, modifications and reaction conditions to achieve better conversion and selectivity. Finding suitable anode materials exhibiting excellent performance and robustness under demanding operating conditions, remains a hurdle. Alternatively, ongoing efforts are directed towards lowering working temperatures, enabling consideration of a wider range of materials with improved electrochemical performance.

Suggested Citation

  • Mohamad Fairus Rabuni & Tao Li & Mohd Hafiz Dzarfan Othman & Faidzul Hakim Adnan & Kang Li, 2023. "Progress in Solid Oxide Fuel Cells with Hydrocarbon Fuels," Energies, MDPI, vol. 16(17), pages 1-36, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6404-:d:1232795
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/17/6404/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/17/6404/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiao, Yong & Zhang, Liqin & An, Wenting & Zhou, Wei & Sha, Yujing & Shao, Zongping & Bai, Jianping & Li, Si-Dian, 2016. "Controlled deposition and utilization of carbon on Ni-YSZ anodes of SOFCs operating on dry methane," Energy, Elsevier, vol. 113(C), pages 432-443.
    2. Barelli, L. & Ottaviano, A., 2014. "Solid oxide fuel cell technology coupled with methane dry reforming: A viable option for high efficiency plant with reduced CO2 emissions," Energy, Elsevier, vol. 71(C), pages 118-129.
    3. Liso, Vincenzo & Olesen, Anders Christian & Nielsen, Mads Pagh & Kær, Søren Knudsen, 2011. "Performance comparison between partial oxidation and methane steam reforming processes for solid oxide fuel cell (SOFC) micro combined heat and power (CHP) system," Energy, Elsevier, vol. 36(7), pages 4216-4226.
    4. Zarabi Golkhatmi, Sanaz & Asghar, Muhammad Imran & Lund, Peter D., 2022. "A review on solid oxide fuel cell durability: Latest progress, mechanisms, and study tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    5. Yuan, Xiuqi & Chen, Huili & Tian, Wenjuan & Shi, Jing & Zhou, Wei & Cheng, Fangqin & Li, Si-Dian & Shao, Zongping, 2020. "Utilization of low-concentration coal-bed gas to generate power using a core-shell catalyst-modified solid oxide fuel cell," Renewable Energy, Elsevier, vol. 147(P1), pages 602-609.
    6. Wang, Yun & Chen, Ken S. & Mishler, Jeffrey & Cho, Sung Chan & Adroher, Xavier Cordobes, 2011. "A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research," Applied Energy, Elsevier, vol. 88(4), pages 981-1007, April.
    7. Chuancheng Duan & Robert J. Kee & Huayang Zhu & Canan Karakaya & Yachao Chen & Sandrine Ricote & Angelique Jarry & Ethan J. Crumlin & David Hook & Robert Braun & Neal P. Sullivan & Ryan O’Hayre, 2018. "Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells," Nature, Nature, vol. 557(7704), pages 217-222, May.
    8. Seungdoo Park & John M. Vohs & Raymond J. Gorte, 2000. "Direct oxidation of hydrocarbons in a solid-oxide fuel cell," Nature, Nature, vol. 404(6775), pages 265-267, March.
    9. Fan, Liyuan & Li, Chao'en & van Biert, Lindert & Zhou, Shou-Han & Tabish, Asif Nadeem & Mokhov, Anatoli & Aravind, Purushothaman Vellayani & Cai, Weiwei, 2022. "Advances on methane reforming in solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    10. Fan Liu & Chuancheng Duan, 2021. "Direct-Hydrocarbon Proton-Conducting Solid Oxide Fuel Cells," Sustainability, MDPI, vol. 13(9), pages 1-9, April.
    11. E. Perry Murray & T. Tsai & S. A. Barnett, 1999. "A direct-methane fuel cell with a ceria-based anode," Nature, Nature, vol. 400(6745), pages 649-651, August.
    12. Kirubakaran, A. & Jain, Shailendra & Nema, R.K., 2009. "A review on fuel cell technologies and power electronic interface," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2430-2440, December.
    13. Aslannejad, H. & Barelli, L. & Babaie, A. & Bozorgmehri, S., 2016. "Effect of air addition to methane on performance stability and coking over NiO–YSZ anodes of SOFC," Applied Energy, Elsevier, vol. 177(C), pages 179-186.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tancredi Testasecca & Manfredi Picciotto Maniscalco & Giovanni Brunaccini & Girolama Airò Farulla & Giuseppina Ciulla & Marco Beccali & Marco Ferraro, 2024. "Toward a Digital Twin of a Solid Oxide Fuel Cell Microcogenerator: Data-Driven Modelling," Energies, MDPI, vol. 17(16), pages 1-15, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammed, Hanin & Al-Othman, Amani & Nancarrow, Paul & Tawalbeh, Muhammad & El Haj Assad, Mamdouh, 2019. "Direct hydrocarbon fuel cells: A promising technology for improving energy efficiency," Energy, Elsevier, vol. 172(C), pages 207-219.
    2. Barelli, L. & Bidini, G. & Cinti, G. & Gallorini, F. & Pöniz, M., 2017. "SOFC stack coupled with dry reforming," Applied Energy, Elsevier, vol. 192(C), pages 498-507.
    3. Thieu, Cam-Anh & Ji, Ho-Il & Kim, Hyoungchul & Yoon, Kyung Joong & Lee, Jong-Ho & Son, Ji-Won, 2019. "Palladium incorporation at the anode of thin-film solid oxide fuel cells and its effect on direct utilization of butane fuel at 600 °C," Applied Energy, Elsevier, vol. 243(C), pages 155-164.
    4. Wang, Yujie & Sun, Zhendong & Li, Xiyun & Yang, Xiaoyu & Chen, Zonghai, 2019. "A comparative study of power allocation strategies used in fuel cell and ultracapacitor hybrid systems," Energy, Elsevier, vol. 189(C).
    5. Yue Teng & Ho Yeon Lee & Haesu Lee & Yoon Ho Lee, 2022. "Effect of Sputtering Pressure on the Nanostructure and Residual Stress of Thin-Film YSZ Electrolyte," Sustainability, MDPI, vol. 14(15), pages 1-9, August.
    6. Chang, Wanhyuk & Kang, Eun Heui & Jeong, Heon Jun & Choi, Wonjoon & Shim, Joon Hyung, 2023. "Inkjet printing of perovskite ceramics for high-performance proton ceramic fuel cells," Energy, Elsevier, vol. 268(C).
    7. Yu, Fangyong & Xiao, Jie & Zhang, Yapeng & Cai, Weizi & Xie, Yongmin & Yang, Naitao & Liu, Jiang & Liu, Meilin, 2019. "New insights into carbon deposition mechanism of nickel/yttrium-stabilized zirconia cermet from methane by in situ investigation," Applied Energy, Elsevier, vol. 256(C).
    8. Maghanki, Maryam Mohammadi & Ghobadian, Barat & Najafi, Gholamhassan & Galogah, Reza Janzadeh, 2013. "Micro combined heat and power (MCHP) technologies and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 510-524.
    9. Iliya Krastev Iliev & Antonina Andreevna Filimonova & Andrey Alexandrovich Chichirov & Natalia Dmitrievna Chichirova & Alexander Vadimovich Pechenkin & Artem Sergeevich Vinogradov, 2023. "Theoretical and Experimental Studies of Combined Heat and Power Systems with SOFCs," Energies, MDPI, vol. 16(4), pages 1-17, February.
    10. Shah, M.A.K. Yousaf & Lu, Yuzheng & Mushtaq, Naveed & Yousaf, Muhammad & Akbar, Nabeela & Xia, Chen & Yun, Sining & Zhu, Bin, 2023. "Semiconductor-membrane fuel cell (SMFC) for renewable energy technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    11. Massimiliano Cimenti & Josephine M. Hill, 2009. "Direct Utilization of Liquid Fuels in SOFC for Portable Applications: Challenges for the Selection of Alternative Anodes," Energies, MDPI, vol. 2(2), pages 1-34, June.
    12. Fan, Liyuan & Li, Chao'en & van Biert, Lindert & Zhou, Shou-Han & Tabish, Asif Nadeem & Mokhov, Anatoli & Aravind, Purushothaman Vellayani & Cai, Weiwei, 2022. "Advances on methane reforming in solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    13. Bruni, G. & Cordiner, S. & Mulone, V., 2014. "Domestic distributed power generation: Effect of sizing and energy management strategy on the environmental efficiency of a photovoltaic-battery-fuel cell system," Energy, Elsevier, vol. 77(C), pages 133-143.
    14. Sariboğa, Vedat & Öksüzömer, Faruk, 2012. "The investigation of active Ni/YSZ interlayer for Cu-based direct-methane solid oxide fuel cells," Applied Energy, Elsevier, vol. 93(C), pages 707-721.
    15. Xu, Haoran & Chen, Bin & Tan, Peng & Cai, Weizi & He, Wei & Farrusseng, David & Ni, Meng, 2018. "Modeling of all porous solid oxide fuel cells," Applied Energy, Elsevier, vol. 219(C), pages 105-113.
    16. Xu, Han & Dang, Zheng, 2016. "Lattice Boltzmann modeling of carbon deposition in porous anode of a solid oxide fuel cell with internal reforming," Applied Energy, Elsevier, vol. 178(C), pages 294-307.
    17. Ahmad Fuzamy Mohd Abd Fatah & Ahmad Zaki Rosli & Ahmad Azmin Mohamad & Andanastuti Muchtar & Muhammed Ali S.A. & Noorashrina A. Hamid, 2022. "Electrochemical Evaluation of Nickel Oxide Addition toward Lanthanum Strontium Cobalt Ferrite Cathode for Intermediate Temperature Solid Oxide Fuel Cell (IT-SOFCS)," Energies, MDPI, vol. 15(14), pages 1-15, July.
    18. Hu, Boxun & Keane, Michael & Patil, Kailash & Mahapatra, Manoj K. & Pasaogullari, Ugur & Singh, Prabhakar, 2014. "Direct methanol utilization in intermediate temperature liquid-tin anode solid oxide fuel cells," Applied Energy, Elsevier, vol. 134(C), pages 342-348.
    19. Park, Kwangjin & Lee, Sangho & Bae, Gyujong & Bae, Joongmyeon, 2015. "Performance analysis of Cu, Sn and Rh impregnated NiO/CGO91 anode for butane internal reforming SOFC at intermediate temperature," Renewable Energy, Elsevier, vol. 83(C), pages 483-490.
    20. Pitchai Ragupathy & Santoshkumar Dattatray Bhat & Nallathamby Kalaiselvi, 2023. "Electrochemical energy storage and conversion: An overview," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(2), March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6404-:d:1232795. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.