Electrochemical characteristics and carbon tolerance of solid oxide fuel cells with direct internal dry reforming of methane
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2018.06.114
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Liu, Ming & van der Kleij, A. & Verkooijen, A.H.M. & Aravind, P.V., 2013. "An experimental study of the interaction between tar and SOFCs with Ni/GDC anodes," Applied Energy, Elsevier, vol. 108(C), pages 149-157.
- Rillo, E. & Gandiglio, M. & Lanzini, A. & Bobba, S. & Santarelli, M. & Blengini, G., 2017. "Life Cycle Assessment (LCA) of biogas-fed Solid Oxide Fuel Cell (SOFC) plant," Energy, Elsevier, vol. 126(C), pages 585-602.
- Aslannejad, H. & Barelli, L. & Babaie, A. & Bozorgmehri, S., 2016. "Effect of air addition to methane on performance stability and coking over NiO–YSZ anodes of SOFC," Applied Energy, Elsevier, vol. 177(C), pages 179-186.
- Giarola, Sara & Forte, Ornella & Lanzini, Andrea & Gandiglio, Marta & Santarelli, Massimo & Hawkes, Adam, 2018. "Techno-economic assessment of biogas-fed solid oxide fuel cell combined heat and power system at industrial scale," Applied Energy, Elsevier, vol. 211(C), pages 689-704.
- Stig Helveg & Carlos López-Cartes & Jens Sehested & Poul L. Hansen & Bjerne S. Clausen & Jens R. Rostrup-Nielsen & Frank Abild-Pedersen & Jens K. Nørskov, 2004. "Atomic-scale imaging of carbon nanofibre growth," Nature, Nature, vol. 427(6973), pages 426-429, January.
- Seungdoo Park & John M. Vohs & Raymond J. Gorte, 2000. "Direct oxidation of hydrocarbons in a solid-oxide fuel cell," Nature, Nature, vol. 404(6775), pages 265-267, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Fan, Liyuan & Li, Chao'en & van Biert, Lindert & Zhou, Shou-Han & Tabish, Asif Nadeem & Mokhov, Anatoli & Aravind, Purushothaman Vellayani & Cai, Weiwei, 2022. "Advances on methane reforming in solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
- Abdelkareem, Mohammad Ali & Tanveer, Waqas Hassan & Sayed, Enas Taha & Assad, M. El Haj & Allagui, Anis & Cha, S.W., 2019. "On the technical challenges affecting the performance of direct internal reforming biogas solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 361-375.
- Kupecki, Jakub & Papurello, Davide & Lanzini, Andrea & Naumovich, Yevgeniy & Motylinski, Konrad & Blesznowski, Marcin & Santarelli, Massimo, 2018. "Numerical model of planar anode supported solid oxide fuel cell fed with fuel containing H2S operated in direct internal reforming mode (DIR-SOFC)," Applied Energy, Elsevier, vol. 230(C), pages 1573-1584.
- Wang, Jincheng & Zhao, Kai & Zhao, Jishi & Li, Jun & Liu, Yihui & Chen, Dongchu & Xu, Qing & Chen, Min, 2022. "A NiMo-YSZ catalyst support layer for regenerable solid oxide fuel cells running on isooctane," Applied Energy, Elsevier, vol. 326(C).
- Lyu, Zewei & Meng, Hao & Zhu, Jianzhong & Han, Minfang & Sun, Zaihong & Xue, Huaqing & Zhao, Yongming & Zhang, Fudong, 2020. "Comparison of off-gas utilization modes for solid oxide fuel cell stacks based on a semi-empirical parametric model," Applied Energy, Elsevier, vol. 270(C).
- Wang, Xiaoling & Gao, Yuan & Zhang, Shuai & Sun, Hao & Li, Jie & Shao, Tao, 2019. "Nanosecond pulsed plasma assisted dry reforming of CH4: The effect of plasma operating parameters," Applied Energy, Elsevier, vol. 243(C), pages 132-144.
- Su, Bosheng & Han, Wei & He, Hongzhou & Jin, Hongguang & Chen, Zhijie & Zheng, Jieqing & Yang, Shaohui & Zhang, Xiaodong, 2020. "Using moderate carbon dioxide separation to improve the performance of solar-driven biogas reforming process," Applied Energy, Elsevier, vol. 279(C).
- Wang, Yang & Wu, Chengru & Zhao, Siyuan & Wang, Jian & Zu, Bingfeng & Han, Minfang & Du, Qing & Ni, Meng & Jiao, Kui, 2022. "Coupling deep learning and multi-objective genetic algorithms to achieve high performance and durability of direct internal reforming solid oxide fuel cell," Applied Energy, Elsevier, vol. 315(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ding, Xiaoyi & Lv, Xiaojing & Weng, Yiwu, 2019. "Coupling effect of operating parameters on performance of a biogas-fueled solid oxide fuel cell/gas turbine hybrid system," Applied Energy, Elsevier, vol. 254(C).
- Yu, Fangyong & Xiao, Jie & Zhang, Yapeng & Cai, Weizi & Xie, Yongmin & Yang, Naitao & Liu, Jiang & Liu, Meilin, 2019. "New insights into carbon deposition mechanism of nickel/yttrium-stabilized zirconia cermet from methane by in situ investigation," Applied Energy, Elsevier, vol. 256(C).
- Mohamad Fairus Rabuni & Tao Li & Mohd Hafiz Dzarfan Othman & Faidzul Hakim Adnan & Kang Li, 2023. "Progress in Solid Oxide Fuel Cells with Hydrocarbon Fuels," Energies, MDPI, vol. 16(17), pages 1-36, September.
- Marta Gandiglio & Fabrizio De Sario & Andrea Lanzini & Silvia Bobba & Massimo Santarelli & Gian Andrea Blengini, 2019. "Life Cycle Assessment of a Biogas-Fed Solid Oxide Fuel Cell (SOFC) Integrated in a Wastewater Treatment Plant," Energies, MDPI, vol. 12(9), pages 1-31, April.
- Li, Bangxin & Irvine, John T.S. & Ni, Jiupai & Ni, Chengsheng, 2022. "High-performance and durable alcohol-fueled symmetrical solid oxide fuel cell based on ferrite perovskite electrode," Applied Energy, Elsevier, vol. 306(PB).
- Steil, M.C. & Nobrega, S.D. & Georges, S. & Gelin, P. & Uhlenbruck, S. & Fonseca, F.C., 2017. "Durable direct ethanol anode-supported solid oxide fuel cell," Applied Energy, Elsevier, vol. 199(C), pages 180-186.
- Ran, Peng & Ou, YiFan & Zhang, ChunYu & Chen, YuTong, 2024. "Energy, exergy, economic, and life cycle environmental analysis of a novel biogas-fueled solid oxide fuel cell hybrid power generation system assisted with solar thermal energy storage unit," Applied Energy, Elsevier, vol. 358(C).
- Huang, Jijiang & Veksha, Andrei & Chan, Wei Ping & Giannis, Apostolos & Lisak, Grzegorz, 2022. "Chemical recycling of plastic waste for sustainable material management: A prospective review on catalysts and processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
- Bedoić, Robert & Dorotić, Hrvoje & Schneider, Daniel Rolph & Čuček, Lidija & Ćosić, Boris & Pukšec, Tomislav & Duić, Neven, 2021. "Synergy between feedstock gate fee and power-to-gas: An energy and economic analysis of renewable methane production in a biogas plant," Renewable Energy, Elsevier, vol. 173(C), pages 12-23.
- Sharma, Monikankana & N, Rakesh & Dasappa, S., 2016. "Solid oxide fuel cell operating with biomass derived producer gas: Status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 450-463.
- Mian Muhammad-Ahson Aslam & Hsion-Wen Kuo & Walter Den & Muhammad Usman & Muhammad Sultan & Hadeed Ashraf, 2021. "Functionalized Carbon Nanotubes (CNTs) for Water and Wastewater Treatment: Preparation to Application," Sustainability, MDPI, vol. 13(10), pages 1-54, May.
- Ingrao, Carlo & Bacenetti, Jacopo & Adamczyk, Janusz & Ferrante, Valentina & Messineo, Antonio & Huisingh, Donald, 2019. "Investigating energy and environmental issues of agro-biogas derived energy systems: A comprehensive review of Life Cycle Assessments," Renewable Energy, Elsevier, vol. 136(C), pages 296-307.
- Iliya Krastev Iliev & Antonina Andreevna Filimonova & Andrey Alexandrovich Chichirov & Natalia Dmitrievna Chichirova & Alexander Vadimovich Pechenkin & Artem Sergeevich Vinogradov, 2023. "Theoretical and Experimental Studies of Combined Heat and Power Systems with SOFCs," Energies, MDPI, vol. 16(4), pages 1-17, February.
- Chen, Xiaohang & Wang, Yuan & Zhao, Yingru & Zhou, Yinghui, 2016. "A study of double functions and load matching of a phosphoric acid fuel cell/heat-driven refrigerator hybrid system," Energy, Elsevier, vol. 101(C), pages 359-365.
- Habibollahzade, Ali & Gholamian, Ehsan & Behzadi, Amirmohammad, 2019. "Multi-objective optimization and comparative performance analysis of hybrid biomass-based solid oxide fuel cell/solid oxide electrolyzer cell/gas turbine using different gasification agents," Applied Energy, Elsevier, vol. 233, pages 985-1002.
- Kupecki, Jakub & Papurello, Davide & Lanzini, Andrea & Naumovich, Yevgeniy & Motylinski, Konrad & Blesznowski, Marcin & Santarelli, Massimo, 2018. "Numerical model of planar anode supported solid oxide fuel cell fed with fuel containing H2S operated in direct internal reforming mode (DIR-SOFC)," Applied Energy, Elsevier, vol. 230(C), pages 1573-1584.
- Ud Din, Zia & Zainal, Z.A., 2016. "Biomass integrated gasification–SOFC systems: Technology overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1356-1376.
- Maestre, V.M. & Ortiz, A. & Ortiz, I., 2021. "Challenges and prospects of renewable hydrogen-based strategies for full decarbonization of stationary power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
- Xu, Qidong & Xia, Lingchao & He, Qijiao & Guo, Zengjia & Ni, Meng, 2021. "Thermo-electrochemical modelling of high temperature methanol-fuelled solid oxide fuel cells," Applied Energy, Elsevier, vol. 291(C).
- Barelli, L. & Bidini, G. & Cinti, G. & Gallorini, F. & Pöniz, M., 2017. "SOFC stack coupled with dry reforming," Applied Energy, Elsevier, vol. 192(C), pages 498-507.
More about this item
Keywords
Solid oxide fuel cell; Direct internal reforming; Biogas; Dry reforming;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:228:y:2018:i:c:p:556-567. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.