Operating strategies to minimize degradation in fuel cell gas turbine hybrids
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2016.10.098
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Eveloy, Valérie, 2012. "Numerical analysis of an internal methane reforming solid oxide fuel cell with fuel recycling," Applied Energy, Elsevier, vol. 93(C), pages 107-115.
- Nease, Jake & Adams, Thomas A., 2015. "Comparative life cycle analyses of bulk-scale coal-fueled solid oxide fuel cell power plants," Applied Energy, Elsevier, vol. 150(C), pages 161-175.
- Komatsu, Y. & Brus, G. & Kimijima, S. & Szmyd, J.S., 2014. "The effect of overpotentials on the transient response of the 300W SOFC cell stack voltage," Applied Energy, Elsevier, vol. 115(C), pages 352-359.
- Ferrari, Mario L., 2015. "Advanced control approach for hybrid systems based on solid oxide fuel cells," Applied Energy, Elsevier, vol. 145(C), pages 364-373.
- Barelli, L. & Bidini, G. & Ottaviano, A., 2013. "Part load operation of a SOFC/GT hybrid system: Dynamic analysis," Applied Energy, Elsevier, vol. 110(C), pages 173-189.
- Liso, Vincenzo & Olesen, Anders Christian & Nielsen, Mads Pagh & Kær, Søren Knudsen, 2011. "Performance comparison between partial oxidation and methane steam reforming processes for solid oxide fuel cell (SOFC) micro combined heat and power (CHP) system," Energy, Elsevier, vol. 36(7), pages 4216-4226.
- Roshandel, Ramin & Parhizkar, Tarannom, 2016. "Degradation based optimization framework for long term applications of energy systems, case study: Solid oxide fuel cell stacks," Energy, Elsevier, vol. 107(C), pages 172-181.
- Al-Masri, A. & Peksen, M. & Blum, L. & Stolten, D., 2014. "A 3D CFD model for predicting the temperature distribution in a full scale APU SOFC short stack under transient operating conditions," Applied Energy, Elsevier, vol. 135(C), pages 539-547.
- Hajimolana, S.A. & Tonekabonimoghadam, S.M. & Hussain, M.A. & Chakrabarti, M.H. & Jayakumar, N.S. & Hashim, M.A., 2013. "Thermal stress management of a solid oxide fuel cell using neural network predictive control," Energy, Elsevier, vol. 62(C), pages 320-329.
- Bakalis, Diamantis P. & Stamatis, Anastassios G., 2013. "Incorporating available micro gas turbines and fuel cell: Matching considerations and performance evaluation," Applied Energy, Elsevier, vol. 103(C), pages 607-617.
- Ma, Ting & Yan, Min & Zeng, Min & Yuan, Jin-liang & Chen, Qiu-yang & Sundén, Bengt & Wang, Qiu-wang, 2015. "Parameter study of transient carbon deposition effect on the performance of a planar solid oxide fuel cell," Applied Energy, Elsevier, vol. 152(C), pages 217-228.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ferrari, Mario L. & Silvestri, Paolo & Reggio, Federico & Massardo, Aristide F., 2018. "Surge prevention for gas turbines connected with large volume size: Experimental demonstration with a microturbine," Applied Energy, Elsevier, vol. 230(C), pages 1057-1064.
- Zuo, Jian & Lv, Hong & Zhou, Daming & Xue, Qiong & Jin, Liming & Zhou, Wei & Yang, Daijun & Zhang, Cunman, 2021. "Deep learning based prognostic framework towards proton exchange membrane fuel cell for automotive application," Applied Energy, Elsevier, vol. 281(C).
- Cuneo, A. & Zaccaria, V. & Tucker, D. & Traverso, A., 2017. "Probabilistic analysis of a fuel cell degradation model for solid oxide fuel cell and gas turbine hybrid systems," Energy, Elsevier, vol. 141(C), pages 2277-2287.
- Zhu, Jiang & Lin, Zijing, 2018. "Degradations of the electrochemical performance of solid oxide fuel cell induced by material microstructure evolutions," Applied Energy, Elsevier, vol. 231(C), pages 22-28.
- Chen, Hao & Yang, Chen & Zhou, Nana & Farida Harun, Nor & Oryshchyn, Danylo & Tucker, David, 2020. "High efficiencies with low fuel utilization and thermally integrated fuel reforming in a hybrid solid oxide fuel cell gas turbine system," Applied Energy, Elsevier, vol. 272(C).
- Shi, Wangying & Zhu, Jianzhong & Han, Minfang & Sun, Zaihong & Guo, Yaming, 2019. "Operating limitation and degradation modeling of micro solid oxide fuel cell-combined heat and power system," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
- Singh, Surinder P. & Ohara, Brandon & Ku, Anthony Y., 2021. "Prospects for cost-competitive integrated gasification fuel cell systems," Applied Energy, Elsevier, vol. 290(C).
- Mohammad shafie, Mohammad & Ali rajabipour, & Mehrpooya, Mehdi, 2022. "Investigation of an electrochemical conversion of carbon dioxide to ethanol and solid oxide fuel cell, gas turbine hybrid process," Renewable Energy, Elsevier, vol. 184(C), pages 1112-1129.
- Xuan-Vien Nguyen, 2019. "Fabrication and Performance Evaluation of Six-Cell Two-Dimensional Configuration Solid Oxide Fuel Cell Stack Based on Planar 6 × 6 cm Anode-Supported Cells," Energies, MDPI, vol. 12(18), pages 1-8, September.
- Iliya Krastev Iliev & Antonina Andreevna Filimonova & Andrey Alexandrovich Chichirov & Natalia Dmitrievna Chichirova & Alexander Vadimovich Pechenkin & Artem Sergeevich Vinogradov, 2023. "Theoretical and Experimental Studies of Combined Heat and Power Systems with SOFCs," Energies, MDPI, vol. 16(4), pages 1-17, February.
- Badur, Janusz & Lemański, Marcin & Kowalczyk, Tomasz & Ziółkowski, Paweł & Kornet, Sebastian, 2018. "Zero-dimensional robust model of an SOFC with internal reforming for hybrid energy cycles," Energy, Elsevier, vol. 158(C), pages 128-138.
- Damo, U.M. & Ferrari, M.L. & Turan, A. & Massardo, A.F., 2019. "Solid oxide fuel cell hybrid system: A detailed review of an environmentally clean and efficient source of energy," Energy, Elsevier, vol. 168(C), pages 235-246.
- Fan, Feilong & Aditya, Venkataraman & Xu, Yan & Cheong, Benjamin & Gupta, Amit K., 2022. "Robustly coordinated operation of a ship microgird with hybrid propulsion systems and hydrogen fuel cells," Applied Energy, Elsevier, vol. 312(C).
- Ferrari, M.L. & Pascenti, M. & Massardo, A.F., 2018. "Validated ejector model for hybrid system applications," Energy, Elsevier, vol. 162(C), pages 1106-1114.
- Ji, Zhixing & Qin, Jiang & Cheng, Kunlin & Guo, Fafu & Zhang, Silong & Zhou, Chaoying & Dong, Peng, 2020. "Determination of the safe operation zone for a turbine-less and solid oxide fuel cell hybrid electric jet engine on unmanned aerial vehicles," Energy, Elsevier, vol. 202(C).
- Chen, Kui & Laghrouche, Salah & Djerdir, Abdesslem, 2019. "Degradation model of proton exchange membrane fuel cell based on a novel hybrid method," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
- Kang, Jing & Wang, Shengwei, 2018. "Robust optimal design of distributed energy systems based on life-cycle performance analysis using a probabilistic approach considering uncertainties of design inputs and equipment degradations," Applied Energy, Elsevier, vol. 231(C), pages 615-627.
- Guk, Erdogan & Ranaweera, Manoj & Venkatesan, Vijay & Kim, Jung-Sik & Jung, WooChul, 2020. "In-situ temperature monitoring directly from cathode surface of an operating solid oxide fuel cell," Applied Energy, Elsevier, vol. 280(C).
- Kim, Young Sang & Lee, Young Duk & Ahn, Kook Young, 2020. "System integration and proof-of-concept test results of SOFC–engine hybrid power generation system," Applied Energy, Elsevier, vol. 277(C).
- Steilen, Mike & Saletti, Costanza & Heddrich, Marc P. & Friedrich, K. Andreas, 2018. "Analysis of the influence of heat transfer on the stationary operation and performance of a solid oxide fuel cell/gas turbine hybrid power plant," Applied Energy, Elsevier, vol. 211(C), pages 479-491.
- Zhou, Su & Xie, Zhengchun & Chen, Chunguang & Zhang, Gang & Guo, Junhua, 2022. "Design and energy consumption research of an integrated air supply device for multi-stack fuel cell systems," Applied Energy, Elsevier, vol. 324(C).
- Cuneo, A. & Zaccaria, V. & Tucker, D. & Sorce, A., 2018. "Gas turbine size optimization in a hybrid system considering SOFC degradation," Applied Energy, Elsevier, vol. 230(C), pages 855-864.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zaccaria, V. & Tucker, D. & Traverso, A., 2016. "Transfer function development for SOFC/GT hybrid systems control using cold air bypass," Applied Energy, Elsevier, vol. 165(C), pages 695-706.
- Baudoin, Sylvain & Vechiu, Ionel & Camblong, Haritza & Vinassa, Jean-Michel & Barelli, Linda, 2016. "Sizing and control of a Solid Oxide Fuel Cell/Gas microTurbine hybrid power system using a unique inverter for rural microgrid integration," Applied Energy, Elsevier, vol. 176(C), pages 272-281.
- Ferrari, Mario L., 2015. "Advanced control approach for hybrid systems based on solid oxide fuel cells," Applied Energy, Elsevier, vol. 145(C), pages 364-373.
- Fardadi, Mahshid & McLarty, Dustin F. & Jabbari, Faryar, 2016. "Investigation of thermal control for different SOFC flow geometries," Applied Energy, Elsevier, vol. 178(C), pages 43-55.
- Komatsu, Y. & Brus, G. & Kimijima, S. & Szmyd, J.S., 2014. "The effect of overpotentials on the transient response of the 300W SOFC cell stack voltage," Applied Energy, Elsevier, vol. 115(C), pages 352-359.
- Barelli, L. & Bidini, G. & Ottaviano, A., 2017. "Integration of SOFC/GT hybrid systems in Micro-Grids," Energy, Elsevier, vol. 118(C), pages 716-728.
- Oryshchyn, Danylo & Harun, Nor Farida & Tucker, David & Bryden, Kenneth M. & Shadle, Lawrence, 2018. "Fuel utilization effects on system efficiency in solid oxide fuel cell gas turbine hybrid systems," Applied Energy, Elsevier, vol. 228(C), pages 1953-1965.
- Azizi, Mohammad Ali & Brouwer, Jacob, 2018. "Progress in solid oxide fuel cell-gas turbine hybrid power systems: System design and analysis, transient operation, controls and optimization," Applied Energy, Elsevier, vol. 215(C), pages 237-289.
- Sorce, A. & Greco, A. & Magistri, L. & Costamagna, P., 2014. "FDI oriented modeling of an experimental SOFC system, model validation and simulation of faulty states," Applied Energy, Elsevier, vol. 136(C), pages 894-908.
- Chen, Daifen & Zeng, Qice & Su, Shichuan & Bi, Wuxi & Ren, Zhiqiang, 2013. "Geometric optimization of a 10-cell modular planar solid oxide fuel cell stack manifold," Applied Energy, Elsevier, vol. 112(C), pages 1100-1107.
- He, Zhongjie & Birgersson, E. & Li, Hua, 2014. "Reduced non-isothermal model for the planar solid oxide fuel cell and stack," Energy, Elsevier, vol. 70(C), pages 478-492.
- D.F. Chuahy, Flavio & Kokjohn, Sage L., 2019. "Solid oxide fuel cell and advanced combustion engine combined cycle: A pathway to 70% electrical efficiency," Applied Energy, Elsevier, vol. 235(C), pages 391-408.
- Damo, U.M. & Ferrari, M.L. & Turan, A. & Massardo, A.F., 2019. "Solid oxide fuel cell hybrid system: A detailed review of an environmentally clean and efficient source of energy," Energy, Elsevier, vol. 168(C), pages 235-246.
- Ramadhani, F. & Hussain, M.A. & Mokhlis, H. & Hajimolana, S., 2017. "Optimization strategies for Solid Oxide Fuel Cell (SOFC) application: A literature survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 460-484.
- Rashid, Kashif & Dong, Sang Keun & Mehran, Muhammad Taqi & Lee, Dong Won, 2017. "Design and analysis of compact hotbox for solid oxide fuel cell based 1kW-class power generation system," Applied Energy, Elsevier, vol. 208(C), pages 620-636.
- Saebea, Dang & Authayanun, Suthida & Patcharavorachot, Yaneeporn & Arpornwichanop, Amornchai, 2016. "Effect of anode–cathode exhaust gas recirculation on energy recuperation in a solid oxide fuel cell-gas turbine hybrid power system," Energy, Elsevier, vol. 94(C), pages 218-232.
- Singh, Surinder P. & Ohara, Brandon & Ku, Anthony Y., 2021. "Prospects for cost-competitive integrated gasification fuel cell systems," Applied Energy, Elsevier, vol. 290(C).
- Lee, Kanghun & Kang, Sanggyu & Ahn, Kook-Young, 2017. "Development of a highly efficient solid oxide fuel cell system," Applied Energy, Elsevier, vol. 205(C), pages 822-833.
- Barelli, L. & Bidini, G. & Cinti, G. & Gallorini, F. & Pöniz, M., 2017. "SOFC stack coupled with dry reforming," Applied Energy, Elsevier, vol. 192(C), pages 498-507.
- Ashraf, Muhammad Adeel & Rashid, Kashif & Rahimipetroudi, Iman & Kim, Hyeon Jin & Dong, Sang Keun, 2020. "Analyzing different planar biogas-fueled SOFC stack designs and their effects on the flow uniformity," Energy, Elsevier, vol. 190(C).
More about this item
Keywords
Control strategies; Degradation; Hybrid systems; SOFC;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:192:y:2017:i:c:p:437-445. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.