IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v138y2015icp91-98.html
   My bibliography  Save this article

Emission reductions studies of a biodiesel engine using EGR and SCR for agriculture operations in developing countries

Author

Listed:
  • Solaimuthu, C.
  • Ganesan, V.
  • Senthilkumar, D.
  • Ramasamy, K.K.

Abstract

This paper reports the experimental results of a single cylinder diesel engine regarding performance, combustion and emission characteristics using Mahua (Madhucaindica) biodiesel and its blends in different volumetric proportions with petro-diesel. The thermo-physical properties of various blends selected for investigation have been experimentally measured for better evaluation of the performance characteristics. Tests have been carried out on a four stroke tangentially vertical (TV) single cylinder diesel engine at 1500rpm using an eddy current dynamometer. The static injection timing employed is 20° bTDC with constant nozzle opening pressure of 250bar. Selective Catalytic Reduction (SCR) as well as Cold and Hot Exhaust Gas Recirculation (CEGR and HEGR) techniques are employed to study the reduction of NOx. Results are compared at full load under steady state condition with conventional engine where no reduction techniques are applied. The comparison indicates that the SCR gives substantial reduction in oxides of nitrogen (NOx) as compared to other technique in a conventional diesel engine fuelled with biodiesel, B100. For B100 with SCR technique, the percentage reduction in NOx is around 20% as compared to conventional engine. This research has been carried out keeping in mind the energy consumption by pumps coupled to diesel engines for irrigation purpose and locomotive tractors used in developing countries. The research findings show that Mahua biodiesel gives equally good performance and lower emissions which make it a good alternative fuel to operate diesel locomotives as well as irrigation pumps without any engine modification.

Suggested Citation

  • Solaimuthu, C. & Ganesan, V. & Senthilkumar, D. & Ramasamy, K.K., 2015. "Emission reductions studies of a biodiesel engine using EGR and SCR for agriculture operations in developing countries," Applied Energy, Elsevier, vol. 138(C), pages 91-98.
  • Handle: RePEc:eee:appene:v:138:y:2015:i:c:p:91-98
    DOI: 10.1016/j.apenergy.2014.04.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914003754
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.04.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Puhan, Sukumar & Vedaraman, N. & Sankaranarayanan, G. & Ram, Boppana V. Bharat, 2005. "Performance and emission study of Mahua oil (madhuca indica oil) ethyl ester in a 4-stroke natural aspirated direct injection diesel engine," Renewable Energy, Elsevier, vol. 30(8), pages 1269-1278.
    2. Agarwal, Deepak & Singh, Shrawan Kumar & Agarwal, Avinash Kumar, 2011. "Effect of Exhaust Gas Recirculation (EGR) on performance, emissions, deposits and durability of a constant speed compression ignition engine," Applied Energy, Elsevier, vol. 88(8), pages 2900-2907, August.
    3. Karthikeyan, B. & Srithar, K., 2011. "Performance characteristics of a glowplug assisted low heat rejection diesel engine using ethanol," Applied Energy, Elsevier, vol. 88(1), pages 323-329, January.
    4. Godiganur, Sharanappa & Suryanarayana Murthy, C.H. & Reddy, Rana Prathap, 2009. "6BTA 5.9 G2-1 Cummins engine performance and emission tests using methyl ester mahua (Madhuca indica) oil/diesel blends," Renewable Energy, Elsevier, vol. 34(10), pages 2172-2177.
    5. Chang, Yu-Cheng & Lee, Wen-Jhy & Wang, Lin-Chi & Yang, Hsi-Hsien & Cheng, Man-Ting & Lu, Jau-Huai & Tsai, Ying I. & Young, Li-Hao, 2014. "Effects of waste cooking oil-based biodiesel on the toxic organic pollutant emissions from a diesel engine," Applied Energy, Elsevier, vol. 113(C), pages 631-638.
    6. An, H. & Yang, W.M. & Chou, S.K. & Chua, K.J., 2012. "Combustion and emissions characteristics of diesel engine fueled by biodiesel at partial load conditions," Applied Energy, Elsevier, vol. 99(C), pages 363-371.
    7. An, H. & Yang, W.M. & Maghbouli, A. & Li, J. & Chou, S.K. & Chua, K.J., 2013. "Performance, combustion and emission characteristics of biodiesel derived from waste cooking oils," Applied Energy, Elsevier, vol. 112(C), pages 493-499.
    8. Roy, Murari Mohon & Wang, Wilson & Bujold, Justin, 2013. "Biodiesel production and comparison of emissions of a DI diesel engine fueled by biodiesel–diesel and canola oil–diesel blends at high idling operations," Applied Energy, Elsevier, vol. 106(C), pages 198-208.
    9. Puhan, Sukumar & Jegan, R. & Balasubbramanian, K. & Nagarajan, G., 2009. "Effect of injection pressure on performance, emission and combustion characteristics of high linolenic linseed oil methyl ester in a DI diesel engine," Renewable Energy, Elsevier, vol. 34(5), pages 1227-1233.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Ang & Zhu, Lei & Deng, Zhiwei & Gao, Zhan & Huang, Zhen, 2017. "A fundamental investigation into chemical effects of carbon dioxide on intermediate temperature oxidation of biodiesel surrogate with laminar flow reactor," Energy, Elsevier, vol. 141(C), pages 20-31.
    2. T. M. Yunus Khan, 2020. "A Review of Performance-Enhancing Innovative Modifications in Biodiesel Engines," Energies, MDPI, vol. 13(17), pages 1-22, August.
    3. Tan, Pi-qiang & Zhong, Yi-mei & Hu, Zhi-yuan & Lou, Di-ming, 2017. "Size distributions, PAHs and inorganic ions of exhaust particles from a heavy duty diesel engine using B20 biodiesel with different exhaust aftertreatments," Energy, Elsevier, vol. 141(C), pages 898-906.
    4. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Mamat, Rizalman & Sidik, Nor Azwadi Che & Azmi, W.H., 2017. "The effect of combustion management on diesel engine emissions fueled with biodiesel-diesel blends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 307-331.
    5. Srihari, S. & Thirumalini, S. & Prashanth, K., 2017. "An experimental study on the performance and emission characteristics of PCCI-DI engine fuelled with diethyl ether-biodiesel-diesel blends," Renewable Energy, Elsevier, vol. 107(C), pages 440-447.
    6. Wang, Dawei & Shi, Lei & Zhu, Sipeng & Liu, Bo & Qian, Yuehua & Deng, Kangyao, 2020. "Numerical and thermodynamic study on effects of high and low pressure exhaust gas recirculation on turbocharged marine low-speed engine," Applied Energy, Elsevier, vol. 261(C).
    7. Jaliliantabar, Farzad & Ghobadian, Barat & Carlucci, Antonio Paolo & Najafi, Gholamhassan & Mamat, Rizalman & Ficarella, Antonio & Strafella, Luciano & Santino, Angelo & De Domenico, Stefania, 2020. "A comprehensive study on the effect of pilot injection, EGR rate, IMEP and biodiesel characteristics on a CRDI diesel engine," Energy, Elsevier, vol. 194(C).
    8. Jaliliantabar, Farzad & Ghobadian, Barat & Najafi, Gholamhassan & Mamat, Rizalman & Carlucci, Antonio Paolo, 2019. "Multi-objective NSGA-II optimization of a compression ignition engine parameters using biodiesel fuel and exhaust gas recirculation," Energy, Elsevier, vol. 187(C).
    9. Krishnamoorthi, M. & Malayalamurthi, R., 2018. "Engine characteristics analysis of chaulmoogra oil blends and corrosion analysis of injector nozzle using scanning electron microscopy/energy dispersive spectroscopy," Energy, Elsevier, vol. 165(PB), pages 1292-1319.
    10. Jiang, Jibing & Li, Dinggen, 2016. "Theoretical analysis and experimental confirmation of exhaust temperature control for diesel vehicle NOx emissions reduction," Applied Energy, Elsevier, vol. 174(C), pages 232-244.
    11. Srihari, S. & Thirumalini, S., 2017. "Investigation on reduction of emission in PCCI-DI engine with biofuel blends," Renewable Energy, Elsevier, vol. 114(PB), pages 1232-1237.
    12. Huang, Haozhong & Wang, Qingxin & Shi, Cheng & Liu, Qingsheng & Zhou, Chengzhong, 2016. "Comparative study of effects of pilot injection and fuel properties on low temperature combustion in diesel engine under a medium EGR rate," Applied Energy, Elsevier, vol. 179(C), pages 1194-1208.
    13. Tan, Pi-qiang & Wang, Shi-yan & Hu, Zhi-yuan & Lou, Di-ming, 2019. "Durability of V2O5-WO3/TiO2 selective catalytic reduction catalysts for heavy-duty diesel engines using B20 blend fuel," Energy, Elsevier, vol. 179(C), pages 383-391.
    14. Zhang, Yunhua & Lou, Diming & Tan, Piqiang & Hu, Zhiyuan, 2018. "Experimental study on the durability of biodiesel-powered engine equipped with a diesel oxidation catalyst and a selective catalytic reduction system," Energy, Elsevier, vol. 159(C), pages 1024-1034.
    15. Chen, Hui & Wang, Jie & Zheng, Yanli & Zhan, Jiao & He, Chenliu & Wang, Qiang, 2018. "Algal biofuel production coupled bioremediation of biomass power plant wastes based on Chlorella sp. C2 cultivation," Applied Energy, Elsevier, vol. 211(C), pages 296-305.
    16. Krishnamoorthi, M. & Malayalamurthi, R., 2018. "Availability analysis, performance, combustion and emission behavior of bael oil - diesel - diethyl ether blends in a variable compression ratio diesel engine," Renewable Energy, Elsevier, vol. 119(C), pages 235-252.
    17. Giorgio Zamboni & Simone Moggia & Massimo Capobianco, 2017. "Effects of a Dual-Loop Exhaust Gas Recirculation System and Variable Nozzle Turbine Control on the Operating Parameters of an Automotive Diesel Engine," Energies, MDPI, vol. 10(1), pages 1-18, January.
    18. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2023. "Advanced strategies to reduce harmful nitrogen-oxide emissions from biodiesel fueled engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    19. Zamboni, Giorgio & Moggia, Simone & Capobianco, Massimo, 2016. "Hybrid EGR and turbocharging systems control for low NOX and fuel consumption in an automotive diesel engine," Applied Energy, Elsevier, vol. 165(C), pages 839-848.
    20. Jeon, Joonho & Park, Sungwook, 2015. "Effects of pilot injection strategies on the flame temperature and soot distributions in an optical CI engine fueled with biodiesel and conventional diesel," Applied Energy, Elsevier, vol. 160(C), pages 581-591.
    21. Krishnamoorthi, M. & Malayalamurthi, R., 2017. "Experimental investigation on performance, emission behavior and exergy analysis of a variable compression ratio engine fueled with diesel - aegle marmelos oil - diethyl ether blends," Energy, Elsevier, vol. 128(C), pages 312-328.
    22. M Krishnamoorthi & R Malayalamurthi, 2018. "Effect of exhaust gas recirculation and charge inlet temperature on performance, combustion, and emission characteristics of diesel engine with bael oil blends," Energy & Environment, , vol. 29(3), pages 372-391, May.
    23. Roberto Guimarães Pereira & João Pedro Barbedo Marques Gutierrez & Juan Manuel Pardal & Ivenio Moreira da Silva, 2019. "Use of Soybean, Corn and Palm Biodiesel in a Centrifugal Pump Driven by a Diesel Engine: Performance and Emissions Analysis," International Journal of Sciences, Office ijSciences, vol. 8(05), pages 83-98, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. E, Jiaqiang & Pham, Minhhieu & Zhao, D. & Deng, Yuanwang & Le, DucHieu & Zuo, Wei & Zhu, Hao & Liu, Teng & Peng, Qingguo & Zhang, Zhiqing, 2017. "Effect of different technologies on combustion and emissions of the diesel engine fueled with biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 620-647.
    2. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    3. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K. & Hazrat, M.A., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel – Part 2: Properties, performance and emission characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1129-1146.
    4. Chiatti, Giancarlo & Chiavola, Ornella & Palmieri, Fulvio, 2017. "Vibration and acoustic characteristics of a city-car engine fueled with biodiesel blends," Applied Energy, Elsevier, vol. 185(P1), pages 664-670.
    5. Roy, Murari Mohon & Calder, Jorge & Wang, Wilson & Mangad, Arvind & Diniz, Fernando Cezar Mariano, 2016. "Cold start idle emissions from a modern Tier-4 turbo-charged diesel engine fueled with diesel-biodiesel, diesel-biodiesel-ethanol, and diesel-biodiesel-diethyl ether blends," Applied Energy, Elsevier, vol. 180(C), pages 52-65.
    6. Mohan, Balaji & Yang, Wenming & Raman, Vallinayagam & Sivasankaralingam, Vedharaj & Chou, Siaw Kiang, 2014. "Optimization of biodiesel fueled engine to meet emission standards through varying nozzle opening pressure and static injection timing," Applied Energy, Elsevier, vol. 130(C), pages 450-457.
    7. Datta, Ambarish & Mandal, Bijan Kumar, 2016. "A comprehensive review of biodiesel as an alternative fuel for compression ignition engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 799-821.
    8. Subramaniam, D. & Murugesan, A. & Avinash, A. & Kumaravel, A., 2013. "Bio-diesel production and its engine characteristics—An expatiate view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 361-370.
    9. Dong Lin Loo & Yew Heng Teoh & Heoy Geok How & Jun Sheng Teh & Liviu Catalin Andrei & Slađana Starčević & Farooq Sher, 2021. "Applications Characteristics of Different Biodiesel Blends in Modern Vehicles Engines: A Review," Sustainability, MDPI, vol. 13(17), pages 1-31, August.
    10. Yunus khan, T.M. & Badruddin, Irfan Anjum & Badarudin, Ahmad & Banapurmath, N.R. & Salman Ahmed, N.J. & Quadir, G.A. & Al-Rashed, Abdullah A.A.A. & Khaleed, H.M.T. & Kamangar, Sarfaraz, 2015. "Effects of engine variables and heat transfer on the performance of biodiesel fueled IC engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 682-691.
    11. Mohan, Balaji & Yang, Wenming & Chou, Siaw kiang, 2013. "Fuel injection strategies for performance improvement and emissions reduction in compression ignition engines—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 664-676.
    12. Kumar, Niraj & Varun, & Chauhan, Sant Ram, 2013. "Performance and emission characteristics of biodiesel from different origins: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 633-658.
    13. Roy, Murari Mohon & Calder, Jorge & Wang, Wilson & Mangad, Arvind & Diniz, Fernando Cezar Mariano, 2016. "Emission analysis of a modern Tier 4 DI diesel engine fueled by biodiesel-diesel blends with a cold flow improver (Wintron Synergy) at multiple idling conditions," Applied Energy, Elsevier, vol. 179(C), pages 45-54.
    14. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Atabani, A.E. & Shahabuddin, M. & Palash, S.M. & Hazrat, M.A., 2013. "Effect of biodiesel from various feedstocks on combustion characteristics, engine durability and materials compatibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 441-455.
    15. Goel, Varun & Kumar, Naresh & Singh, Paramvir, 2018. "Impact of modified parameters on diesel engine characteristics using biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2716-2729.
    16. Mofijur, M. & Atabani, A.E. & Masjuki, H.H. & Kalam, M.A. & Masum, B.M., 2013. "A study on the effects of promising edible and non-edible biodiesel feedstocks on engine performance and emissions production: A comparative evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 391-404.
    17. Vijay Kumar, M. & Veeresh Babu, A. & Ravi Kumar, P., 2018. "Experimental investigation on the effects of diesel and mahua biodiesel blended fuel in direct injection diesel engine modified by nozzle orifice diameters," Renewable Energy, Elsevier, vol. 119(C), pages 388-399.
    18. Bari, S. & Saad, Idris, 2014. "Effect of guide vane height on the performance and emissions of a compression ignition (CI) engine run with biodiesel through simulation and experiment," Applied Energy, Elsevier, vol. 136(C), pages 431-444.
    19. Xue, Jinlin & Grift, Tony E. & Hansen, Alan C., 2011. "Effect of biodiesel on engine performances and emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1098-1116, February.
    20. An, H. & Yang, W.M. & Li, J., 2015. "Effects of ethanol addition on biodiesel combustion: A modeling study," Applied Energy, Elsevier, vol. 143(C), pages 176-188.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:138:y:2015:i:c:p:91-98. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.