IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v141y2017icp898-906.html
   My bibliography  Save this article

Size distributions, PAHs and inorganic ions of exhaust particles from a heavy duty diesel engine using B20 biodiesel with different exhaust aftertreatments

Author

Listed:
  • Tan, Pi-qiang
  • Zhong, Yi-mei
  • Hu, Zhi-yuan
  • Lou, Di-ming

Abstract

Exhaust particle emissions from a heavy duty diesel engine using B20 biodiesel (20% biodiesel blend with 80% diesel by volume) were investigated, and the engine was equipped with three kinds of exhaust aftertreatment devices: DOC (diesel oxidation catalyst), DOC + DPF (diesel particle filter), and DOC + CDPF (catalyzed diesel particle filter). Particle mass, particle number and size distribution, and PAHs (polycyclic aromatic hydrocarbons) and inorganic ions in the particle emissions from the engine were studied. Compared with the engine without exhaust aftertreatments, DOC decreased nucleation mode particle number by 19.83%, while accumulation mode particles exhibited slight changes. The DOC + DPF reduced the total particle number by 82.54%, while the DOC + CDPF reduced it by 91.71%. Compared with the engine without exhaust aftertreatments, the three aftertreatments were shown to reduce total PAH emissions. DOC + DPF and DOC + CDPF can decrease total TEQ (toxicity equivalent quantity) effectively with a sharp decrease in PAH mass. The DOC increased the TEQ of particles by 46.9%. The catalyst in the DOC increased some high molecular weight PAHs such as BaA, BbF + BkF, and BaP, which led to the increase in TEQ. The DOC increased the total inorganic ions by 2%, while the DOC + DPF and DOC + CDPF decreased inorganic ions by 89.5% and 82.9%, respectively. Catalysts in DOC and CDPF promotes the formation of SO42− and NO3−, which leads to higher inorganic ion emissions with DOC than no aftertreatments and higher inorganic ion emissions with a DOC + CDPF than with a DOC + DPF.

Suggested Citation

  • Tan, Pi-qiang & Zhong, Yi-mei & Hu, Zhi-yuan & Lou, Di-ming, 2017. "Size distributions, PAHs and inorganic ions of exhaust particles from a heavy duty diesel engine using B20 biodiesel with different exhaust aftertreatments," Energy, Elsevier, vol. 141(C), pages 898-906.
  • Handle: RePEc:eee:energy:v:141:y:2017:i:c:p:898-906
    DOI: 10.1016/j.energy.2017.09.122
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217316420
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.09.122?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tan, Pi-qiang & Ruan, Shuai-shuai & Hu, Zhi-yuan & Lou, Di-ming & Li, Hu, 2014. "Particle number emissions from a light-duty diesel engine with biodiesel fuels under transient-state operating conditions," Applied Energy, Elsevier, vol. 113(C), pages 22-31.
    2. Kalam, M.A. & Masjuki, H.H. & Jayed, M.H. & Liaquat, A.M., 2011. "Emission and performance characteristics of an indirect ignition diesel engine fuelled with waste cooking oil," Energy, Elsevier, vol. 36(1), pages 397-402.
    3. Tan, Pi-qiang & Hu, Zhi-yuan & Lou, Di-ming & Li, Zhi-jun, 2012. "Exhaust emissions from a light-duty diesel engine with Jatropha biodiesel fuel," Energy, Elsevier, vol. 39(1), pages 356-362.
    4. Solaimuthu, C. & Ganesan, V. & Senthilkumar, D. & Ramasamy, K.K., 2015. "Emission reductions studies of a biodiesel engine using EGR and SCR for agriculture operations in developing countries," Applied Energy, Elsevier, vol. 138(C), pages 91-98.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chu, Huaqiang & Han, Weiwei & Cao, Wenjian & Gu, Mingyan & Xu, Guangju, 2019. "Effect of methane addition to ethylene on the morphology and size distribution of soot in a laminar co-flow diffusion flame," Energy, Elsevier, vol. 166(C), pages 392-400.
    2. Sungwoon Jung & Sunmoon Kim & Taekho Chung & Heekyoung Hong & Seunghwan Lee & Jaehyun Lim, 2021. "Emission Characteristics of Hazardous Air Pollutants from Medium-Duty Diesel Trucks Based on Driving Cycles," Sustainability, MDPI, vol. 13(14), pages 1-18, July.
    3. Kang, Yinhu & Sun, Yuming & Lu, Xiaofeng & Gou, Xiaolong & Sun, Sicong & Yan, Jin & Song, Yangfan & Zhang, Pengyuan & Wang, Quanhai & Ji, Xuanyu, 2018. "Soot formation characteristics of ethylene premixed burner-stabilized stagnation flame with dimethyl ether addition," Energy, Elsevier, vol. 150(C), pages 709-721.
    4. Zhang, Yunhua & Lou, Diming & Tan, Piqiang & Hu, Zhiyuan, 2018. "Particulate emissions from urban bus fueled with biodiesel blend and their reducing characteristics using particulate after-treatment system," Energy, Elsevier, vol. 155(C), pages 77-86.
    5. García, Duban & Ramos, Ángel & Rodríguez-Fernández, José & Bustamante, Felipe & Alarcón, Edwin & Lapuerta, Magín, 2020. "Impact of oxyfunctionalized turpentine on emissions from a Euro 6 diesel engine," Energy, Elsevier, vol. 201(C).
    6. Ghadikolaei, Meisam Ahmadi & Wong, Pak Kin & Cheung, Chun Shun & Ning, Zhi & Yung, Ka-Fu & Zhao, Jing & Gali, Nirmal Kumar & Berenjestanaki, Alireza Valipour, 2021. "Impact of lower and higher alcohols on the physicochemical properties of particulate matter from diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    7. Tan, Piqiang & Cui, Bokuan & Duan, Lishuang & Yin, Yifan & Lou, Diming & Hu, Zhiyuan, 2023. "Pressure drop model of DPF considering ash factor at different capture stages," Energy, Elsevier, vol. 283(C).
    8. Chen, Ying-jie & Tan, Pi-qiang & Duan, Li-shuang & Liu, Yang & Lou, Di-ming & Hu, Zhi-yuan, 2023. "Temperature, particulate emission characteristics, and emission reduction performance for SCR coated on DPF under drop to idle regeneration," Energy, Elsevier, vol. 268(C).
    9. Li, Zhaohao & Mi, Dabin & Zhang, Heng & Chen, Haiping & Liu, Zhenghao & Gao, Dan, 2021. "Experimental study on synergistic capture of fine particles and waste heat from flue gas using membrane condenser," Energy, Elsevier, vol. 217(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tan, Pi-qiang & Ruan, Shuai-shuai & Hu, Zhi-yuan & Lou, Di-ming & Li, Hu, 2014. "Particle number emissions from a light-duty diesel engine with biodiesel fuels under transient-state operating conditions," Applied Energy, Elsevier, vol. 113(C), pages 22-31.
    2. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Mamat, Rizalman & Sidik, Nor Azwadi Che & Azmi, W.H., 2017. "The effect of combustion management on diesel engine emissions fueled with biodiesel-diesel blends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 307-331.
    3. Zhang, Yunhua & Lou, Diming & Tan, Piqiang & Hu, Zhiyuan, 2018. "Experimental study on the durability of biodiesel-powered engine equipped with a diesel oxidation catalyst and a selective catalytic reduction system," Energy, Elsevier, vol. 159(C), pages 1024-1034.
    4. Ghorbani, Afshin & Bazooyar, Bahamin, 2012. "Optimization of the combustion of SOME (soybean oil methyl ester), B5, B10, B20 and petrodiesel in a semi industrial boiler," Energy, Elsevier, vol. 44(1), pages 217-227.
    5. D´Agosto, Márcio de Almeida & da Silva, Marcelino Aurélio Vieira & Franca, Luíza Santana & de Oliveira, Cíntia Machado & Alexandre, Manuel Oliveira Lemos & da Costa Marques, Luiz Guilherme & Murta, Au, 2017. "Comparative study of emissions from stationary engines using biodiesel made from soybean oil, palm oil and waste frying oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1376-1392.
    6. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Atabani, A.E., 2013. "Evaluation of biodiesel blending, engine performance and emissions characteristics of Jatropha curcas methyl ester: Malaysian perspective," Energy, Elsevier, vol. 55(C), pages 879-887.
    7. Zare, Ali & Bodisco, Timothy A. & Nabi, Md Nurun & Hossain, Farhad M. & Rahman, M.M. & Ristovski, Zoran D. & Brown, Richard J., 2017. "The influence of oxygenated fuels on transient and steady-state engine emissions," Energy, Elsevier, vol. 121(C), pages 841-853.
    8. Zhang, Yunhua & Lou, Diming & Tan, Piqiang & Hu, Zhiyuan, 2018. "Particulate emissions from urban bus fueled with biodiesel blend and their reducing characteristics using particulate after-treatment system," Energy, Elsevier, vol. 155(C), pages 77-86.
    9. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Atabani, A.E. & Shahabuddin, M. & Palash, S.M. & Hazrat, M.A., 2013. "Effect of biodiesel from various feedstocks on combustion characteristics, engine durability and materials compatibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 441-455.
    10. Charu Vikram Srivatsa & Shah Saud Alam & Bailey Spickler & Christopher Depcik, 2024. "Effect of Exhaust Gas Recirculation on Combustion Characteristics of Ultra-Low-Sulfur Diesel in Conventional and PPCI Regimes for a High-Compression-Ratio Engine," Energies, MDPI, vol. 17(16), pages 1-26, August.
    11. Thanh Xuan NguyenThi & Jean-Patrick Bazile & David Bessières, 2018. "Density Measurements of Waste Cooking Oil Biodiesel and Diesel Blends Over Extended Pressure and Temperature Ranges," Energies, MDPI, vol. 11(5), pages 1-14, May.
    12. Kalam, M.A. & Masjuki, H.H., 2011. "An experimental investigation of high performance natural gas engine with direct injection," Energy, Elsevier, vol. 36(5), pages 3563-3571.
    13. Yesilyurt, Murat Kadir & Eryilmaz, Tanzer & Arslan, Mevlüt, 2018. "A comparative analysis of the engine performance, exhaust emissions and combustion behaviors of a compression ignition engine fuelled with biodiesel/diesel/1-butanol (C4 alcohol) and biodiesel/diesel/," Energy, Elsevier, vol. 165(PB), pages 1332-1351.
    14. Singh, Paramvir & Varun, & Chauhan, S.R., 2016. "Carbonyl and aromatic hydrocarbon emissions from diesel engine exhaust using different feedstock: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 269-291.
    15. Liu, Junheng & Sun, Ping & Huang, He & Meng, Jian & Yao, Xiaohua, 2017. "Experimental investigation on performance, combustion and emission characteristics of a common-rail diesel engine fueled with polyoxymethylene dimethyl ethers-diesel blends," Applied Energy, Elsevier, vol. 202(C), pages 527-536.
    16. Pullen, James & Saeed, Khizer, 2014. "Factors affecting biodiesel engine performance and exhaust emissions – Part I: Review," Energy, Elsevier, vol. 72(C), pages 1-16.
    17. Wong, Ka In & Wong, Pak Kin & Cheung, Chun Shun & Vong, Chi Man, 2013. "Modeling and optimization of biodiesel engine performance using advanced machine learning methods," Energy, Elsevier, vol. 55(C), pages 519-528.
    18. Varatharajan, K. & Cheralathan, M., 2012. "Influence of fuel properties and composition on NOx emissions from biodiesel powered diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3702-3710.
    19. Zhang, Ji & Jing, Wei & Roberts, William L. & Fang, Tiegang, 2013. "Effects of ambient oxygen concentration on biodiesel and diesel spray combustion under simulated engine conditions," Energy, Elsevier, vol. 57(C), pages 722-732.
    20. Charlotte Stead & Zia Wadud & Chris Nash & Hu Li, 2019. "Introduction of Biodiesel to Rail Transport: Lessons from the Road Sector," Sustainability, MDPI, vol. 11(3), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:141:y:2017:i:c:p:898-906. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.