IDEAS home Printed from https://ideas.repec.org/a/adm/journl/v8y2019i5p83-98.html
   My bibliography  Save this article

Use of Soybean, Corn and Palm Biodiesel in a Centrifugal Pump Driven by a Diesel Engine: Performance and Emissions Analysis

Author

Listed:
  • Roberto Guimarães Pereira
  • João Pedro Barbedo Marques Gutierrez
  • Juan Manuel Pardal
  • Ivenio Moreira da Silva

Abstract

The present study is related with the use of soybean, corn and palm biodiesel in a centrifugal pump driven by a diesel engine. Performance and emissions analysis were investigated using pure biodiesel (B100) and its mixtures with diesel (B50), comparing the results with pure diesel (B0) and also with the diesel sold at Brazilian fuel stations (B8). A test bench has been optimized for monitoring the behavior of centrifugal pump driven by a diesel engine. The viscosity, density, sulfur tenor, carbon tenor, hydrogen tenor, nitrogen tenor, lower and higher heating value were determined for various fuels used. The power, the fuel consumption and the emissions of: CO; CO2; NO; NO2; NOx; and SO2 were determined. The engine performed well with biofuels blended (B50) and biodiesels (B100). This confirms one of the great advantages of using biodiesel, which is the possibility of using a renewable fuel produced from a variety of raw materials leading to a cleaner energy production.

Suggested Citation

  • Roberto Guimarães Pereira & João Pedro Barbedo Marques Gutierrez & Juan Manuel Pardal & Ivenio Moreira da Silva, 2019. "Use of Soybean, Corn and Palm Biodiesel in a Centrifugal Pump Driven by a Diesel Engine: Performance and Emissions Analysis," International Journal of Sciences, Office ijSciences, vol. 8(05), pages 83-98, May.
  • Handle: RePEc:adm:journl:v:8:y:2019:i:5:p:83-98
    DOI: 10.18483/ijSci.2066
    as

    Download full text from publisher

    File URL: https://www.ijsciences.com/pub/article/2066
    Download Restriction: no

    File URL: https://www.ijsciences.com/pub/pdf/V82019052066.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.18483/ijSci.2066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sumathi, S. & Chai, S.P. & Mohamed, A.R., 2008. "Utilization of oil palm as a source of renewable energy in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2404-2421, December.
    2. Clever Ketlogetswe & Jerekias Gandure & Mbako Jonas, 2018. "On-road performance analysis of Tallow Biodiesel on a 2.8 Toyota Raider Hilux," International Journal of Sciences, Office ijSciences, vol. 7(02), pages 46-51, February.
    3. Muhammad Qasim & Tariq Mahmood Ansari & Mazhar Hussain, 2017. "Preparation, Characterization and Engine Performance of Biodiesel Fuel Derived from Waste Cooking Oil and its Blends," International Journal of Sciences, Office ijSciences, vol. 6(03), pages 113-118, March.
    4. Solaimuthu, C. & Ganesan, V. & Senthilkumar, D. & Ramasamy, K.K., 2015. "Emission reductions studies of a biodiesel engine using EGR and SCR for agriculture operations in developing countries," Applied Energy, Elsevier, vol. 138(C), pages 91-98.
    5. Pereira, Roberto G. & Oliveira, Cesar D. & Oliveira, Jorge L. & Oliveira, Paulo Cesar P. & Fellows, Carlos E. & Piamba, Oscar E., 2007. "Exhaust emissions and electric energy generation in a stationary engine using blends of diesel and soybean biodiesel," Renewable Energy, Elsevier, vol. 32(14), pages 2453-2460.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saddam H. Al-lwayzy & Talal Yusaf, 2013. "Chlorella protothecoides Microalgae as an Alternative Fuel for Tractor Diesel Engines," Energies, MDPI, vol. 6(2), pages 1-18, February.
    2. Lam, Hon Loong & Ng, Wendy P.Q. & Ng, Rex T.L. & Ng, Ern Huay & Aziz, Mustafa K. Abdul & Ng, Denny K.S., 2013. "Green strategy for sustainable waste-to-energy supply chain," Energy, Elsevier, vol. 57(C), pages 4-16.
    3. Azadeh, Ali & Vafa Arani, Hamed, 2016. "Biodiesel supply chain optimization via a hybrid system dynamics-mathematical programming approach," Renewable Energy, Elsevier, vol. 93(C), pages 383-403.
    4. Saqr, Khalid M. & Musa, Md. Nor, 2011. "A perspective of the Malaysian highway energy consumption and future power supply," Energy Policy, Elsevier, vol. 39(6), pages 3873-3877, June.
    5. Rathmann, Régis & Szklo, Alexandre & Schaeffer, Roberto, 2010. "Land use competition for production of food and liquid biofuels: An analysis of the arguments in the current debate," Renewable Energy, Elsevier, vol. 35(1), pages 14-22.
    6. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Lee, P.S. & Chua, K.J.E. & Chou, S.K., 2013. "Combustion performance and emission characteristics study of pine oil in a diesel engine," Energy, Elsevier, vol. 57(C), pages 344-351.
    7. Scholz, Marco & Melin, Thomas & Wessling, Matthias, 2013. "Transforming biogas into biomethane using membrane technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 199-212.
    8. Vilaysit Thithai & Xuanjun Jin & Muhammed Ajaz Ahmed & Joon-Weon Choi, 2021. "Physicochemical Properties of Activated Carbons Produced from Coffee Waste and Empty Fruit Bunch by Chemical Activation Method," Energies, MDPI, vol. 14(11), pages 1-16, May.
    9. Li, Ang & Zhu, Lei & Deng, Zhiwei & Gao, Zhan & Huang, Zhen, 2017. "A fundamental investigation into chemical effects of carbon dioxide on intermediate temperature oxidation of biodiesel surrogate with laminar flow reactor," Energy, Elsevier, vol. 141(C), pages 20-31.
    10. Norhisam Misron & Suhairi Rizuan & Aravind Vaithilingam & Nashiren Farzilah Mailah & Hanamoto Tsuyoshi & Yamada Hiroaki & Shirai Yoshihito, 2011. "Performance Improvement of a Portable Electric Generator Using an Optimized Bio-Fuel Ratio in a Single Cylinder Two-Stroke Engine," Energies, MDPI, vol. 4(11), pages 1-13, November.
    11. López, I. & Pinzi, S. & Leiva-Candia, D. & Dorado, M.P., 2016. "Multiple response optimization to reduce exhaust emissions and fuel consumption of a diesel engine fueled with olive pomace oil methyl ester/diesel fuel blends," Energy, Elsevier, vol. 117(P2), pages 398-404.
    12. Lin, Yung-Sung & Lin, Hai-Ping, 2010. "Study on the spray characteristics of methyl esters from waste cooking oil at elevated temperature," Renewable Energy, Elsevier, vol. 35(9), pages 1900-1907.
    13. Nur Izzah Hamna A. Aziz & Marlia M. Hanafiah, 2017. "The Potential Of Palm Oil Mill Effluent (POME) As A Renewable Energy Source," Acta Scientifica Malaysia (ASM), Zibeline International Publishing, vol. 1(2), pages 9-11, October.
    14. T. M. Yunus Khan, 2020. "A Review of Performance-Enhancing Innovative Modifications in Biodiesel Engines," Energies, MDPI, vol. 13(17), pages 1-22, August.
    15. Shekarchian, M. & Moghavvemi, M. & Mahlia, T.M.I. & Mazandarani, A., 2011. "A review on the pattern of electricity generation and emission in Malaysia from 1976 to 2008," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2629-2642, August.
    16. Mekhilef, Saad & Barimani, Meghdad & Safari, Azadeh & Salam, Zainal, 2014. "Malaysia’s renewable energy policies and programs with green aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 497-504.
    17. Suhaiza Zailani & Mohammad Iranmanesh & Sunghyup Sean Hyun & Mohd Helmi Ali, 2019. "Barriers of Biodiesel Adoption by Transportation Companies: A Case of Malaysian Transportation Industry," Sustainability, MDPI, vol. 11(3), pages 1-15, February.
    18. Ahmad, Farah B. & Zhang, Zhanying & Doherty, William O.S. & O'Hara, Ian M., 2019. "The outlook of the production of advanced fuels and chemicals from integrated oil palm biomass biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 386-411.
    19. Shafie, S.M. & Mahlia, T.M.I. & Masjuki, H.H. & Ahmad-Yazid, A., 2012. "A review on electricity generation based on biomass residue in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5879-5889.
    20. Habib Hussain Khan & Nahla Samargandi & Adeel Ahmed, 2021. "Economic development, energy consumption, and climate change: An empirical account from Malaysia," Natural Resources Forum, Blackwell Publishing, vol. 45(4), pages 397-423, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:adm:journl:v:8:y:2019:i:5:p:83-98. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Staff ijSciences (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.