IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v266y2022ics0378377422001184.html
   My bibliography  Save this article

Encounter risk analysis of crop water requirements and effective precipitation based on the copula method in the Hilly Area of Southwest China

Author

Listed:
  • Zhang, Yaling
  • Guo, Li
  • Liang, Chuan
  • Zhao, Lu
  • Wang, Junqin
  • Zhan, Cun
  • Jiang, Shouzheng

Abstract

The effective precipitation (Pe) and crop water requirements (ETc) can reflect the agricultural water supply and demand situations under natural precipitation conditions, and the encounter risk analysis of Pe and ETc is a prerequisite for regional water resources allocation and irrigation planning. Considering an entire growing season of rape-maize in the Hilly Area of Southwest China during 1961–2017, this study employed the popular copula functions to fit two-dimensional joint distribution of annual ETc and Pe, and analyzed the natural agriculture water shortages risk of different encounter situations. The results indicated ETc and Pe presented a negative relativity, and the Gaussian copula was found to be more suitable to estimate the joint distribution of ETc and Pe. The asynchronous encounter probability was higher two times than the synchronous encounter probability, and the pairs (rich Pe-poor ETc, poor Pe-rich ETc) had the greatest probability with value of 16.59%, indicating the natural water supply and demand usually was unmatched. The conditional probability of Pe without exceeding a certain value for different ETc states increased with increased Pe, and the conditional probability of ETc with exceeding a certain value for different Pe states decreased with increased ETc. The conditional probability of Pe without exceeding Pe 37.5%, Pe 62.5%, Pe average (ETc exceeding ETc 37.5%, ETc 62.5%, ETc average) for different ETc (Pe) states was 44.97–69.12% (the corresponding return period was 1.45–2.22 years), showing natural agriculture water shortages risk was high under general situations. However, the conditional probabilities of extremely high ETc (low Pe) with given low Pe (high ETc) were less than 3%, so extreme water shortages rarely occurred in the Sichuan Hilly Area. This study successfully applied the copula method to regional agricultural water shortages risk analysis and could provide a theoretical basis for regional water resources management and planning.

Suggested Citation

  • Zhang, Yaling & Guo, Li & Liang, Chuan & Zhao, Lu & Wang, Junqin & Zhan, Cun & Jiang, Shouzheng, 2022. "Encounter risk analysis of crop water requirements and effective precipitation based on the copula method in the Hilly Area of Southwest China," Agricultural Water Management, Elsevier, vol. 266(C).
  • Handle: RePEc:eee:agiwat:v:266:y:2022:i:c:s0378377422001184
    DOI: 10.1016/j.agwat.2022.107571
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422001184
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.107571?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ali Tabrizi & Davar Khalili & Ali Kamgar-Haghighi & Shahrokh Zand-Parsa, 2010. "Utilization of Time-Based Meteorological Droughts to Investigate Occurrence of Streamflow Droughts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(15), pages 4287-4306, December.
    2. Pereira, L.S. & Paredes, P. & López-Urrea, R. & Hunsaker, D.J. & Mota, M. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for vegetable crops, an update of FAO56 crop water requirements approach," Agricultural Water Management, Elsevier, vol. 243(C).
    3. Jane Qiu, 2010. "China drought highlights future climate threats," Nature, Nature, vol. 465(7295), pages 142-143, May.
    4. Harris Vangelis & Mike Spiliotis & George Tsakiris, 2011. "Drought Severity Assessment Based on Bivariate Probability Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(1), pages 357-371, January.
    5. Jiang, Shouzheng & Liang, Chuan & Cui, Ningbo & Zhao, Lu & Du, Taisheng & Hu, Xiaotao & Feng, Yu & Guan, Jing & Feng, Yi, 2019. "Impacts of climatic variables on reference evapotranspiration during growing season in Southwest China," Agricultural Water Management, Elsevier, vol. 216(C), pages 365-378.
    6. Gong, Xinghui & Zhang, Hongbo & Ren, Chongfeng & Sun, Dongyong & Yang, Jiantao, 2020. "Optimization allocation of irrigation water resources based on crop water requirement under considering effective precipitation and uncertainty," Agricultural Water Management, Elsevier, vol. 239(C).
    7. Esmaeel Dodangeh & Vijay P. Singh & Binh Thai Pham & Jiabo Yin & Guang Yang & Amirhosein Mosavi, 2020. "Flood Frequency Analysis of Interconnected Rivers by Copulas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(11), pages 3533-3549, September.
    8. Jinping Zhang & Yong Zhao & Weihua Xiao, 2014. "Study on Markov Joint Transition Probability and Encounter Probability of Rainfall and Reference Crop Evapotranspiration in the Irrigation District," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(15), pages 5543-5553, December.
    9. Pereira, L.S. & Paredes, P. & Hunsaker, D.J. & López-Urrea, R. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method," Agricultural Water Management, Elsevier, vol. 243(C).
    10. Alcigeimes Celeste & Max Billib, 2012. "Improving Implicit Stochastic Reservoir Optimization Models with Long-Term Mean Inflow Forecast," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2443-2451, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shiang-Jen Wu & Jie-Sen Mai & Yi-Hong Lin & Keh-Chia Yeh, 2022. "Modeling Probabilistic-Based Reliability Analysis for Irrigation Water Supply Due to Uncertainties in Hydrological and Irrigation Factors," Sustainability, MDPI, vol. 14(19), pages 1-25, October.
    2. Zhang, Shuo & Kang, Yan & Gao, Xuan & Chen, Peiru & Cheng, Xiao & Song, Songbai & Li, Lingjie, 2023. "Optimal reservoir operation and risk analysis of agriculture water supply considering encounter uncertainty of precipitation in irrigation area and runoff from upstream," Agricultural Water Management, Elsevier, vol. 277(C).
    3. Zhang, Fan & Cui, Ningbo & Guo, Shanshan & Yue, Qiong & Jiang, Shouzheng & Zhu, Bin & Yu, Xiuyun, 2023. "Irrigation strategy optimization in irrigation districts with seasonal agricultural drought in southwest China: A copula-based stochastic multiobjective approach," Agricultural Water Management, Elsevier, vol. 282(C).
    4. Khaledi-Alamdari, Mohammad & Majnooni-Heris, Abolfazl & Fakheri-Fard, Ahmad & Russo, Ana, 2023. "Probabilistic climate risk assessment in rainfed wheat yield: Copula approach using water requirement satisfaction index," Agricultural Water Management, Elsevier, vol. 289(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Darouich, Hanaa & Karfoul, Razan & Ramos, Tiago B. & Moustafa, Ali & Shaheen, Baraa & Pereira, Luis S., 2021. "Crop water requirements and crop coefficients for jute mallow (Corchorus olitorius L.) using the SIMDualKc model and assessing irrigation strategies for the Syrian Akkar region," Agricultural Water Management, Elsevier, vol. 255(C).
    2. Pereira, L.S. & Paredes, P. & Melton, F. & Johnson, L. & Mota, M. & Wang, T., 2021. "Prediction of crop coefficients from fraction of ground cover and height: Practical application to vegetable, field and fruit crops with focus on parameterization," Agricultural Water Management, Elsevier, vol. 252(C).
    3. Ebtessam A. Youssef & Marwa M. Abdelbaset & Osama M. Dewedar & José Miguel Molina-Martínez & Ahmed F. El-Shafie, 2023. "Crop Coefficient Estimation and Effect of Abscisic Acid on Red Cabbage Plants ( Brassica oleracea var. Capitata) under Water-Stress Conditions," Agriculture, MDPI, vol. 13(3), pages 1-16, March.
    4. Serra, J. & Paredes, P. & Cordovil, CMdS & Cruz, S. & Hutchings, NJ & Cameira, MR, 2023. "Is irrigation water an overlooked source of nitrogen in agriculture?," Agricultural Water Management, Elsevier, vol. 278(C).
    5. Jinping Zhang & Yong Zhao & Weihua Xiao, 2014. "Study on Markov Joint Transition Probability and Encounter Probability of Rainfall and Reference Crop Evapotranspiration in the Irrigation District," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(15), pages 5543-5553, December.
    6. Qiu, Rangjian & Li, Longan & Liu, Chunwei & Wang, Zhenchang & Zhang, Baozhong & Liu, Zhandong, 2022. "Evapotranspiration estimation using a modified crop coefficient model in a rotated rice-winter wheat system," Agricultural Water Management, Elsevier, vol. 264(C).
    7. Paredes, Paula & Trigo, Isabel & de Bruin, Henk & Simões, Nuno & Pereira, Luis S., 2021. "Daily grass reference evapotranspiration with Meteosat Second Generation shortwave radiation and reference ET products," Agricultural Water Management, Elsevier, vol. 248(C).
    8. Tamimi, Mansoor Al & Green, Steve & Hammami, Zied & Ammar, Khalil & Ketbi, Mouza Al & Al-Shrouf, Ali M. & Dawoud, Mohamed & Kennedy, Lesley & Clothier, Brent, 2022. "Evapotranspiration and crop coefficients using lysimeter measurements for food crops in the hyper-arid United Arab Emirates," Agricultural Water Management, Elsevier, vol. 272(C).
    9. Zhang, Shuo & Kang, Yan & Gao, Xuan & Chen, Peiru & Cheng, Xiao & Song, Songbai & Li, Lingjie, 2023. "Optimal reservoir operation and risk analysis of agriculture water supply considering encounter uncertainty of precipitation in irrigation area and runoff from upstream," Agricultural Water Management, Elsevier, vol. 277(C).
    10. Qin, Shujing & Li, Sien & Cheng, Lei & Zhang, Lu & Qiu, Rangjian & Liu, Pan & Xi, Haiyang, 2023. "Partitioning evapotranspiration in partially mulched interplanted croplands by improving the Shuttleworth-Wallace model," Agricultural Water Management, Elsevier, vol. 276(C).
    11. Zhao, Xiaole & Mak-Mensah, Erastus & Zhao, Wucheng & Wang, Qi & Zhou, Xujiao & Zhang, Dengkui & Zhu, Jinhui & Qi, Wenjia & Liu, Qinglin & Li, Xiaoling & Li, Xuchun & Liu, Bing, 2024. "Optimized ridge-furrow technology with biochar amendment for alfalfa yield enhancement and soil erosion reduction based on a structural equation model on sloping land," Agricultural Water Management, Elsevier, vol. 298(C).
    12. Panagiotis Angelidis & Fotios Maris & Nikos Kotsovinos & Vlassios Hrissanthou, 2012. "Computation of Drought Index SPI with Alternative Distribution Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2453-2473, July.
    13. McNamara, Ian & Flörke, Martina & Uschan, Thorben & Baez-Villanueva, Oscar M. & Herrmann, Frank, 2024. "Estimates of irrigation requirements throughout Germany under varying climatic conditions," Agricultural Water Management, Elsevier, vol. 291(C).
    14. Seyed Banimahd & Davar Khalili, 2013. "Factors Influencing Markov Chains Predictability Characteristics, Utilizing SPI, RDI, EDI and SPEI Drought Indices in Different Climatic Zones," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(11), pages 3911-3928, September.
    15. Martínez-Romero, A. & López-Urrea, R. & Montoya, F. & Pardo, J.J. & Domínguez, A., 2021. "Optimization of irrigation scheduling for barley crop, combining AquaCrop and MOPECO models to simulate various water-deficit regimes," Agricultural Water Management, Elsevier, vol. 258(C).
    16. Mashabatu, Munashe & Ntshidi, Zanele & Dzikiti, Sebinasi & Jovanovic, Nebojsa & Dube, Timothy & Taylor, Nicky J., 2023. "Deriving crop coefficients for evergreen and deciduous fruit orchards in South Africa using the fraction of vegetation cover and tree height data," Agricultural Water Management, Elsevier, vol. 286(C).
    17. He, Rui & He, Min & Xu, Haidong & Zhang, Kun & Zhang, Mingcai & Ren, Dan & Li, Zhaohu & Zhou, Yuyi & Duan, Liusheng, 2023. "A novel plant growth regulator brazide improved maize water productivity in the arid region of Northwest China," Agricultural Water Management, Elsevier, vol. 287(C).
    18. Ramos, Tiago B. & Darouich, Hanaa & Oliveira, Ana R. & Farzamian, Mohammad & Monteiro, Tomás & Castanheira, Nádia & Paz, Ana & Gonçalves, Maria C. & Pereira, Luís S., 2023. "Water use and soil water balance of Mediterranean tree crops assessed with the SIMDualKc model in orchards of southern Portugal," Agricultural Water Management, Elsevier, vol. 279(C).
    19. Liebhard, Gunther & Klik, Andreas & Neugschwandtner, Reinhard W. & Nolz, Reinhard, 2022. "Effects of tillage systems on soil water distribution, crop development, and evaporation and transpiration rates of soybean," Agricultural Water Management, Elsevier, vol. 269(C).
    20. Chia, Min Yan & Huang, Yuk Feng & Koo, Chai Hoon, 2022. "Resolving data-hungry nature of machine learning reference evapotranspiration estimating models using inter-model ensembles with various data management schemes," Agricultural Water Management, Elsevier, vol. 261(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:266:y:2022:i:c:s0378377422001184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.